RESUMEN
Objective: Expanded potential stem cells (EPSCs) are stem cells that can differentiate into embryonic and extraembryonic lineages, including extraembryonic endoderm and trophoblast lineages. Therefore, EPSCs have great potential in advancing regenerative medicine, elucidating disease mechanisms, and exploring early embryonic development. However, the generation and characterization of EPSCs in pigs have not been thoroughly explored. In this study, we successfully generated porcine EPSCs (pEPSCs). Methods: We reprogrammed porcine fetal fibroblasts (PFFs) using an integration-free method with Sendai virus vectors. Results: The resulting pEPSCs expressed key pluripotency markers and demonstrated the ability to differentiate between embryonic and extraembryonic lineages. Notably, reprogramming into pEPSCs was associated with a transformation of mitochondrial morphology from the elongated form observed in PFFs to a globular shape, reflecting potential alterations in energy metabolism. We observed significant remodeling of mitochondrial morphology and a subsequent shift towards glycolytic energy dependence during the reprogramming of PFFs into pEPSCs. Conclusion: Our findings provide valuable insights into the characteristics of EPSCs in pigs and highlight their potential applications in regenerative medicine, disease modeling, and emerging fields such as cell-based meat production.
RESUMEN
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Asunto(s)
Implantación del Embrión , Gastrulación , Células Madre Pluripotentes , Animales , Femenino , Humanos , Embarazo , Diferenciación Celular , Embrión de Mamíferos , Desarrollo Embrionario , Organogénesis , Células Madre Pluripotentes/metabolismo , PrimatesRESUMEN
Efforts have been made to establish various human pluripotent stem cell lines. However, such methods have not yet been duplicated in non-human primate cells. Here, we introduce a multiplexed single-cell sequencing technique to profile the molecular features of monkey pluripotent stem cells in published culture conditions. The results demonstrate suboptimized maintenance of pluripotency and show that the selected signaling pathways for resetting human stem cells can also be interpreted for establishing monkey cell lines. Overall, this work legitimates the translation of novel human cell line culture conditions to monkey cells and provides guidance for exploring chemical cocktails for monkey stem cell line derivation.
Asunto(s)
Células Madre Pluripotentes , Análisis de Expresión Génica de una Sola Célula , Animales , Haplorrinos , Células Madre Pluripotentes/metabolismo , Línea Celular , Transducción de Señal , Diferenciación Celular , TranscriptomaRESUMEN
Totipotent stem cells (TSCs), can develop into complete organisms, are used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, it is difficult to maintain the developmental totipotency and self-renewal capacity of cells cultured from early-stage embryos, which becomes a key factor limiting the research of TSCs. Fortunately, a breakthrough in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Totipotentes , Animales , Blastocisto , Diferenciación Celular , MamíferosRESUMEN
Totipotent stem cells are transiently occurring in vivo cells that can form all cell types of the embryo including placenta, with their in vitro counterparts being actively pursued. Subsequently, totipotent-like cells are established with variable robustness and biological relevance. Here, we summarize current progress on capturing these cells in culture.
Asunto(s)
Embrión de Mamíferos , Células Madre Totipotentes , Diferenciación Celular/genética , Células Madre Totipotentes/metabolismoRESUMEN
Human extended pluripotent stem (hEPS) cell is a newly established human embryonic stem cell (hESC) line with the capacity of chimerizing both embryonic and extraembryonic tissues compared with primed hESCs which are inefficient to contribute to the inner cell mass (ICM). The molecular mechanism underlying the pluripotency of hEPS cells is still not clear. We conducted RNA-seq and ATAC-seq analysis to investigate the differential expression profiling and genomic chromatin accessibility features. According to our data, more than 2000 genes were specially up-regulated in hEPS cells. Furthermore, the open chromatin regions in these two human embryonic stem cell lines were quite different. In hEPS cells, transcriptional factors binding motifs associated with pluripotency maintenance were enriched in chromatin accessible regions. Integrating the results from ATAC-seq and RNA-seq, we identified new regulatory features which were important for pluripotency maintenance and cell development in hEPS cells. Together, these results provided a new perspective on the understanding of molecular features of hESCs in different pluripotent states and a novel resource for further studies on regenerative medicine by using hEPS cells.
Asunto(s)
Cromatina/metabolismo , Células Madre Pluripotentes/metabolismo , Células Cultivadas , HumanosRESUMEN
Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.
Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Biomarcadores , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular , Ingeniería Genética , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismoRESUMEN
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Asunto(s)
Quimerismo , Embrión de Mamíferos/citología , Células Madre Pluripotentes/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Macaca fascicularis , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , RNA-Seq , Análisis de la Célula Individual , TranscriptomaRESUMEN
2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are a new class of halophenolic disinfection byproducts (DBPs) which have been widely detected in drinking water. In recent years, their developmental toxicity has got increasing public attention due to their potential toxic effects on embryo development towards lower organisms. Nonetheless, the application of human embryos for embryonic toxicologic studies is rendered by ethical and moral considerations, as well as the technical barrier to sustaining normal development beyond a few days. Human extended pluripotent stem (EPS) cells (novel totipotent-like stem cells) represent a much more appropriate cellular model for studying human embryo development. In this study, we utilized human EPS cells to study the developmental toxicity of TCP, TBP and TIP, respectively. All three halophenolic DBPs showed cytotoxicity against human EPS cells in an obvious dose-dependent manner, among which TIP was the most cytotoxic one. Notably, the expression of pluripotent genes in human EPS cells significantly declined after 2,4,6-trihalophenol exposure. Meanwhile, 2,4,6-trihalophenol exposure promoted ectodermal differentiation of human EPS cells in an embryoid bodies (EBs) differentiation assay, while both endodermal and mesodermal differentiation were impaired. These results implied that phenolic halogenated DBPs have specific effects on human embryo development even in the early stage of pregnancy. In summary, we applied human EPS cells as a novel research model for human embryo developmental toxicity study of environmental pollutants, and demonstrated the toxicity of phenolic halogenated DBPs on early embryo development of human beings.
Asunto(s)
Desinfectantes , Agua Potable , Células Madre Pluripotentes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Humanos , Células Madre Pluripotentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Human trophoblast stem cells (hTSCs) derived from blastocysts and first-trimester cytotrophoblasts offer an unprecedented opportunity to study the placenta. However, access to human embryos and first-trimester placentas is limited, thus preventing the establishment of hTSCs from diverse genetic backgrounds associated with placental disorders. Here, we show that hTSCs can be generated from numerous genetic backgrounds using post-natal cells via two alternative methods: (1) somatic cell reprogramming of adult fibroblasts with OCT4, SOX2, KLF4, MYC (OSKM) and (2) cell fate conversion of naive and extended pluripotent stem cells. The resulting induced/converted hTSCs recapitulated hallmarks of hTSCs including long-term self-renewal, expression of specific transcription factors, transcriptomic signature, and the potential to differentiate into syncytiotrophoblast and extravillous trophoblast cells. We also clarified the developmental stage of hTSCs and show that these cells resemble day 8 cytotrophoblasts. Altogether, hTSC lines of diverse genetic origins open the possibility to model both placental development and diseases in a dish.
Asunto(s)
Células Madre Pluripotentes/metabolismo , Trofoblastos/metabolismo , Diferenciación Celular , Femenino , Humanos , EmbarazoRESUMEN
A single mouse blastomere from an embryo until the 8-cell stage can generate an entire blastocyst. Whether laboratory-cultured cells retain a similar generative capacity remains unknown. Starting from a single stem cell type, extended pluripotent stem (EPS) cells, we established a 3D differentiation system that enabled the generation of blastocyst-like structures (EPS-blastoids) through lineage segregation and self-organization. EPS-blastoids resembled blastocysts in morphology and cell-lineage allocation and recapitulated key morphogenetic events during preimplantation and early postimplantation development in vitro. Upon transfer, some EPS-blastoids underwent implantation, induced decidualization, and generated live, albeit disorganized, tissues in utero. Single-cell and bulk RNA-sequencing analysis revealed that EPS-blastoids contained all three blastocyst cell lineages and shared transcriptional similarity with natural blastocysts. We also provide proof of concept that EPS-blastoids can be generated from adult cells via cellular reprogramming. EPS-blastoids provide a unique platform for studying early embryogenesis and pave the way to creating viable synthetic embryos by using cultured cells.
Asunto(s)
Blastocisto/citología , Linaje de la Célula , Implantación del Embrión , Células Madre Pluripotentes Inducidas/citología , Células Madre Embrionarias de Ratones/citología , Creación de Embriones para Investigación/métodos , Animales , Blastocisto/metabolismo , Diferenciación Celular , Línea Celular , Células Cultivadas , Técnicas de Reprogramación Celular/métodos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/metabolismo , TranscriptomaRESUMEN
Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the "holy grail" of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Blastocisto/metabolismo , Quimera/embriología , Células Madre Embrionarias Humanas/metabolismo , Animales , Blastocisto/citología , Chlorocebus aethiops , Células Madre Embrionarias Humanas/citología , Humanos , Factor 4 Similar a Kruppel , Ratones , Ovinos , PorcinosRESUMEN
In contrast to embryo donation, the permissibility of 2PN cell donation is highly controversial in Germany. This article is based on there being a legal loophole with respect to 2PN cell donation, which results from an inconsistency within the Embryo Protection Act on the normative status of 2PN cells. Following that thesis, the article argues that, on the basis of the normative criterion totipotency (i.e. the capacity to develop into a born human being), 2PN cells should also be considered human embryos within the meaning of the Act and thereby be protected by that Act in the same way as embryos. However, the normative assumption that 2PN cells should already be endowed with human dignity and the right to life has absurd consequences. Moreover, the consistent continuation of the Embryo Protection Act, as well as of the underlying ethical position or argumentation (i.e. the potentiality argument), leads to the even more absurd consequence of having to place every human somatic cell under the protection of human dignity and the right to life. As totipotency or the developmental potential therefore cannot delimit entities considered worthy of protection (i.e. human embryos) from entities considered not worthy of protection (i.e. 2PN cells, gametes, hESC, hiPSC and human somatic cells), it is not a suitable normative criterion. As a paradigmatic case, 2PN cell donation demonstrates that by retaining this normative criterion the now obsolete German Embryo Protection (Act) ultimately undermines itself.