Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Food Nutr Res ; 682024.
Artículo en Inglés | MEDLINE | ID: mdl-39113917

RESUMEN

Background and objective: LN19183 is a proprietary, synergistic combination of Citrus aurantifolia fruit rind and Theobroma cacao seed extracts that increased resting energy expenditure (REE) in high-fat diet (HFD)-fed obese rats. The objective of this study was to validate the thermogenic potential of LN19183 in obese Sprague Dawley (SD) rats and to assess its clinical efficacy in a proof-of-concept, randomized, placebo-controlled, cross-over human trial. Methods: In the rat study, HFD-fed obese rats were supplemented with either HFD alone or with 45, 90, or 180 mg LN19183 per kg body weight (BW) for 28 days. In the human study, 60 overweight adults (male and female, aged 20-39 years) were randomized. Subjects took LN19183 (450 mg) or a matched placebo capsule on two consecutive days in phases one and two of the study, separated by a 10-day washout period. In each phase, on day 1, REE at pre-dose, 60-, 120-, and 180-min post-dose, and on day 2, metabolic rates at pre-dose and post-dose during and 20 min after exercise were measured using indirect calorimetry. Results: In rats, LN19183 significantly increased REE, reduced BW gain and fat masses, and increased fat and carbohydrate metabolism marker proteins including beta 3 adrenergic receptor (ß3-AR), phospho-AMP-activated protein kinase (AMPK), glucagon-like peptide-1 receptor (GLP-1R) in the liver, and serum adiponectin levels. Furthermore, LN19183-supplemented human volunteers increased (P < 0.05, vs. placebo) the metabolic rates at rest and with exercise; their fat oxidation was increased (P < 0.05, vs. placebo) at rest and 20 min post-exercise. The groups' systolic and diastolic blood pressure (BP), heart rates (HR), and safety parameters were comparable. Conclusion: These observations suggest that LN19183 is a thermogenic botanical composition with no stimulatory effects on BP and HR.

2.
World J Hepatol ; 8(27): 1137-1148, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27721919

RESUMEN

AIM: To investigate the independent effects of 6-mo of dietary energy restriction or exercise training on whole-body and hepatic fat oxidation of patients with non-alcoholic fatty liver disease (NAFLD). METHODS: Participants were randomised into either circuit exercise training (EX; n = 13; 3 h/wk without changes in dietary habits), or dietary energy restriction (ER) without changes in structured physical activity (ER; n = 8). Respiratory quotient (RQ) and whole-body fat oxidation rates (Fatox) were determined by indirect calorimetry under basal, insulin-stimulated and exercise conditions. Severity of disease and steatosis was determined by liver histology; hepatic Fatox was estimated from plasma ß-hydroxybutyrate concentrations; cardiorespiratory fitness was expressed as VO2peak. Complete-case analysis was performed (EX: n = 10; ER: n = 6). RESULTS: Hepatic steatosis and NAFLD activity score decreased with ER but not with EX. ß-hydroxybutyrate concentrations increased significantly in response to ER (0.08 ± 0.02 mmol/L vs 0.12 ± 0.04 mmol/L, P = 0.03) but remained unchanged in response to EX (0.10 ± 0.03 mmol/L vs 0.11 ± 0.07 mmol/L, P = 0.39). Basal RQ decreased (P = 0.05) in response to EX, while this change was not significant after ER (P = 0.38). VO2peak (P < 0.001) and maximal Fatox during aerobic exercise (P = 0.03) improved with EX but not with ER (P > 0.05). The increase in ß-hydroxybutyrate concentrations was correlated with the reduction in hepatic steatosis (r = -0.56, P = 0.04). CONCLUSION: ER and EX lead to specific benefits on fat metabolism of patients with NAFLD. Increased hepatic Fatox in response to ER could be one mechanism through which the ER group achieved reduction in steatosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA