Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 273: 118539, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560951

RESUMEN

Flexible touch screen panel (f-TSP) has been emerging recently and metallic nanowire transparent conductive electrodes (TCEs) are its key components. However, most metallic nanowire (MNW) TCEs suffer from weak bonding strength between metal nanowire electrode layers and polymer substrates, which causes delamination of TCEs and produces serious declines in durability of f-TSPs. Here, we introduce AgS bonding and develop tough and strong electrode-substrate bonded MNW TCEs, which can enhance durability of f-TSPs significantly. We used silver nanowires (AgNWs) as metal conductive electrode and thiol-modified nanofibrillated cellulose (NFC-HS) nanopaper as substrates. Because of the existence of Ag from AgNWs and S from NFC-HS, strong AgS bonding was generated and tough TCEs were obtained. The TCEs exhibit excellent electrical stability, outstanding optical and electrical properties. The f-TSP devices integrated with the TCEs illustrate striking durability. This technique may provide a promising strategy to produce flexible and tough TCEs for next-generation high-durability f-TSPs.

2.
ACS Appl Mater Interfaces ; 13(35): 41836-41845, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459190

RESUMEN

Flexible transparent conductive electrode (FTCE) is highly desirable due to the fast-growing flexible optoelectronic devices. Several promising FTCEs based on metal material have been developed to replace conventional indium tin oxide (ITO). The random metal mesh is considered to be one of the competitive candidates. However, obtaining feasible random metal mesh with low sheet resistance, high transparency, good mechanical durability, and strong environmental stability is still a great challenge. Here, a random metal mesh-based FTCE with an in-plane structure, achieved by a facile hot-pressing process, is demonstrated. The hot-pressing process enables the fabrication of highly conductive FTCE with improved mechanical robustness and environmental stability. The in-plane FTCE shows a low sheet resistance of 1.63 Ω·sq-1 with an 80.6% transmittance, low relative resistance increase (RRI) of 7.9% after 240 h 85 °C/85% RH test, and low RRI of 8.0% after 105 cycles of bending test. Besides, various applications of the in-plane FTCE were demonstrated, including the flexible heater, flexible touch screen, and flexible electroluminescence. We anticipate that these results will spark interest in in-plane random metal mesh electrodes and enable the application of random metal mesh in flexible optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 9(46): 40905-40913, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29099584

RESUMEN

This work presents a new template-assisted fabrication method to obtain stretchable metal grids for high-performance stretchable transparent conducting electrodes (TCEs). Readily accessible metal woven mesh (MWM) is used as a template to make the fabrication process simple, cost-effective, reproducible, and potentially scalable by combining it with silver nanowire (AgNW) coating and elastomer filling processes. Stretchable TCEs are made with the AgNW-coated MWM and show remarkable optoelectronic performance with a sheet resistance of ∼3.2 Ω/sq and optical transmittance of >80%, large maximum stretchability of 40%, and electrical and mechanical robustness even under repeated stretching and bending deformations (1000 cycles). The device is demonstrated in a highly flexible touch screen panel that can operate well even in a bent state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA