Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Insects ; 15(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921142

RESUMEN

The interaction between bees and flowering plants is mediated by floral cues that enable bees to find foraging plants. We tested floral cue preferences among three common wild bee species: Lasioglossum villosulum, Osmia bicornis, and Bombus terrestris. Preferences are well studied in eusocial bees but almost unknown in solitary or non-eusocial generalist bee species. Using standardized artificial flowers altered in single cues, we tested preferences for color hue, achromatic contrast, scent complexity, corolla size, and flower depth. We found common attractive cues among all tested bees. Intensively colored flowers and large floral displays were highly attractive. No preferences were observed in scent complexity experiments, and the number of volatiles did not influence the behavior of bees. Differing preferences were found for color hue. The specific behaviors were probably influenced by foraging experience and depended on the flower choice preferences of the tested bee species. In experiments testing different flower depths of reward presentation, the bees chose flat flowers that afforded low energy costs. The results reveal that generalist wild bee species other than well-studied honeybees and bumblebees show strong preferences for distinct floral cues to find potential host plants. The diverse preferences of wild bees ensure the pollination of various flowering plants.

2.
Ann Bot ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535525

RESUMEN

BACKGROUND AND AIMS: Pollinators provide critical ecosystem services, maintaining biodiversity and benefiting global food production. However, plants, pollinators, and their mutualistic interactions may be affected by drought, which has increased in severity and frequency under climate change. Using two annual, insect-pollinated wildflowers (Phacelia campanularia and Nemophila menziesii), we asked how drought impacts floral traits and foraging preferences of a solitary bee (Osmia lignaria) and explore potential implications for plant reproduction. METHODS: In greenhouses, we experimentally subjected plants to drought to induce water stress, as verified by leaf water potential. To assess the impact of drought on floral traits, we measured flower size, floral display size, nectar volume, and nectar sugar concentration. To explore how drought-induced effects on floral traits affected bee foraging preferences, we performed choice trials. Individual female bees were placed into foraging arenas with two conspecific plants, one droughted and one non-droughted, and were allowed to forage freely. KEY RESULTS: We determined that P. campanularia is more drought-tolerant than N. menziesii based on measures of turgor loss point, and confirmed that droughted plants were more drought-stressed than non-droughted plants. For droughted plants of both species, floral display size was reduced, and flowers were smaller and produced less, more-concentrated nectar. We found that bees preferred non-droughted flowers of N. menziesii. However, bee preference for non-droughted P. campanularia flowers depended on the time of day and was detected only in the afternoon. CONCLUSIONS: Our findings indicate that bees prefer visiting non-droughted flowers, likely reducing pollination success for drought-stressed plants. Lack of preference for non-droughted P. campanularia flowers in the morning may reflect the higher drought tolerance of this species. This work highlights the potentially intersecting, short-term physiological and pollinator behavioral responses to drought and suggests that such responses may reshape plant-pollinator interactions, ultimately reducing reproductive output for less drought-tolerant wildflowers.

3.
AoB Plants ; 15(6): plad084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38090391

RESUMEN

To explain the co-existence and maintenance of females along with hermaphrodite plants, the female advantage hypothesis has been proposed where females should show greater fecundity compared to their conspecific hermaphrodites. On the other hand, greater attraction would be selected in the hermaphrodites to increase their male function, potentially leading to larger showier flowers, with more rewards. Here, I tested the sexual dimorphism trade-off hypothesis with the gynomonoecious-gynodioecious Dianthus plumarius (Caryophyllaceae), in the gardens of Bariloche (Patagonia, Argentina). I measured in female and hermaphrodite plants: flower size, nectar volume and concentration, flower lifespan, ovule production, seed number, seed set and seed weight. Additionally, bagging and pollen supplementation experiments were carried out to evaluate pollen limitation, probability of apomixis, if spontaneous autogamy is possible, and to examine the importance of pollen origin. I found that hermaphrodite flowers are more attractive, with larger-sized flowers and higher nectar volume, whereas female flowers compensate with longer lifespan of stigmatic receptivity and more concentrated nectar. Despite ovule number was lower in female flowers, these showed higher seed set and produced more and heavier seeds than hermaphrodites under open pollination. No evidence of apomixis was found in females, but spontaneous autogamy may occur in hermaphrodites. Hand-pollination experiments showed first that both flower types suffered pollen limitation, but it was higher on hermaphrodite flowers. Finally, despite self-compatibility, pollen origin is important because hand self-pollination decreases seed weight. These findings provide strong evidence in support of the mechanisms and underlying conditions that would allow the co-existence and maintenance of female and hermaphrodite individuals within populations.

4.
Ecol Evol ; 13(11): e10617, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37953990

RESUMEN

Adaptations that attract pollinators to flowers are central to the reproductive success of insect-pollinated plants, including crops. Understanding the influence of these non-rewarding traits on pollinator preference is important for our future food security by maintaining sufficient crop pollination. We have identified substantial variation in flower shape, petal size, corolla-tube length, petal spot size and floral volatile compounds among a panel of 30 genetically distinct lines of Vicia faba. Using this variation, we found that Bombus terrestris was able to distinguish between natural variation in petal spot size, floral volatile emissions and corolla-tube length. Foragers showed some innate preference for spotted flowers over non-spotted flowers and preferred shorter corolla-tube lengths over longer tubes. Our results suggest that some floral traits may have significant potential to enhance pollinator attraction to V. faba crops, particularly if paired with optimised rewards.

5.
BMC Plant Biol ; 23(1): 545, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936061

RESUMEN

BACKGROUND: The orchid industry has seen a recent surge in export values due to the floral morphology and versatile applications of orchids in various markets for medicinal, food additive, and cosmetic usages. However, plant-related diseases, including the yellow leaf disease caused by Fusarium solani, have caused significant losses in the production value of Phalaenopsis (up to 30%). RESULTS: In this study, 203 Phalaenopsis cultivars were collected from 10 local orchid nurseries, and their disease severity index and correlation with flower size were evaluated. Larger flowers had weaker resistance to yellow leaf disease, and smaller flowers had stronger resistance. For the genetic relationship of disease resistance to flower size, the genetic background of all cultivars was assessed using OrchidWiz Orchid Database Software and principal component analysis. In addition, we identified the orthologous genes of BraTCP4, namely PeIN6, PeCIN7, and PeCIN8, which are involved in resistance to pathogens, and analyzed their gene expression. The expression of PeCIN8 was significantly higher in the most resistant cultivars (A7403, A11294, and A2945) relative to the most susceptible cultivars (A10670, A6390, and A10746). CONCLUSIONS: We identified a correlation between flower size and resistance to yellow leaf disease in Phalaenopsis orchids. The expression of PeCIN8 may regulate the two traits in the disease-resistant cultivars. These findings can be applied to Phalaenopsis breeding programs to develop resistant cultivars against yellow leaf disease.


Asunto(s)
Orchidaceae , Orchidaceae/genética , Orchidaceae/metabolismo , Fitomejoramiento , Flores/genética , Flores/metabolismo , Hojas de la Planta/genética , Fenotipo
6.
Plants (Basel) ; 12(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631189

RESUMEN

Flower traits, such as flower size or color changes, can act as honest signals indicating greater rewards such as nectar; however, nothing is known about shelter-rewarding systems. Large flowers of Royal irises offer overnight shelter as a reward to Eucera bees. A black patch might signal the entrance to the tunnel (shelter) and, together with the flower size, these might act as honest signals. We hypothesize that larger flowers and black patches indicate larger tunnels, and larger tunnels will increase pollinator visits, enhancing the plants' reproductive success. We measured seven species in a controlled environment and two species from three natural populations varying in flower size. Fruit and seed sets were assessed in these natural populations. We found a positive correlation between the flower, patch size, and tunnel volume, suggesting that the flowers and patch size act as honest signals, both under controlled conditions and in the wild. However, in natural populations, this positive relationship and its effect on fitness was population-specific. Flower size increased the fitness in YER I. petrana, and interactions between flower/patch size and tunnel size increased the fitness in YER and I. atropurpurea NET populations. This suggests that the honesty of the signal is positively selected in these two populations. This study supports the hypothesis that pollinator-mediated selection leads to the honest signaling of flower advertisement.

7.
Front Plant Sci ; 14: 1226713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37650001

RESUMEN

Rose (Rosa spp.) is one of the most economically important ornamental species worldwide. Flower diameter, flower weight, and the number of petals and petaloids are key flower-size parameters and attractive targets for DNA-informed breeding. Pedigree-based analysis (PBA) using FlexQTL software was conducted using two sets of multi-parental diploid rose populations. Phenotypic data for flower diameter (Diam), flower weight (fresh (FWT)/dry (DWT)), number of petals (NP), and number of petaloids (PD) were collected over six environments (seasons) at two locations in Texas. The objectives of this study were to 1) identify new and/or validate previously reported QTL(s); 2) identify SNP haplotypes associated with QTL alleles (Q-/q-) of a trait and their sources; and 3) determine QTL genotypes for important rose breeding parents. Several new and previously reported QTLs for NP and Diam traits were identified. In addition, QTLs associated with flower weight and PD were identified for the first time. Two major QTLs with large effects were mapped for all traits. The first QTL was at the distal end of LG1 (60.44-60.95 Mbp) and was associated with Diam and DWT in the TX2WOB populations. The second QTL was consistently mapped in the middle region on LG3 (30.15-39.34 Mbp) and associated with NP, PD, and flower weight across two multi-parent populations (TX2WOB and TX2WSE). Haplotype results revealed a series of QTL alleles with differing effects at important loci for most traits. This work is distinct from previous studies by conducting co-factor analysis to account for the DOUBLE FLOWER locus while mapping QTL for NP. Sources of high-value (Q) alleles were identified, namely, 'Old Blush' and Rosa wichuraiana from J14-3 for Diam, while 'Violette' and PP-J14-3 were sources for other traits. In addition, the source of the low-value (q) alleles for Diam was 'Little Chief', and Rosa wichuraiana through J14-3 was the source for the remaining traits. Hence, our results can potentially inform parental/seedling selections as means to improve ornamental quality in roses and a step towards implementing DNA-informed techniques for use in rose breeding programs.

9.
Am J Bot ; 109(10): 1545-1559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36164840

RESUMEN

PREMISE: Ex situ cultivation is important for plant conservation, but cultivation in small populations may result in genetic changes by drift, inbreeding, or unconscious selection. Repeated inbreeding potentially influences not only plant fitness, but also floral traits and interactions with pollinators, which has not yet been studied in an ex situ context. METHODS: We studied the molecular genetic variation of Digitalis lutea from a botanic garden population cultivated for 30 years, a frozen seed bank conserving the original genetic structure, and two current wild populations including the source population. In a common garden, we studied the effects of experimental inbreeding and between-population crosses on performance, reproductive traits, and flower visitation of plants from the garden and a wild population. RESULTS: Significant genetic differentiation was found between the garden population and the wild population from which the seeds had originally been gathered. After experimental selfing, inbreeding depression was only found for germination and leaf size of plants from the wild population, indicating a history of inbreeding in the smaller garden population. Moreover, garden plants flowered earlier and had floral traits related to selfing, whereas wild plants had traits related to attracting pollinators. Bumblebees visited more flowers of outbred than inbred plants and of wild than garden plants. CONCLUSIONS: Our case study suggests that high levels of inbreeding during ex situ cultivation can influence reproductive traits and thus interactions with pollinators. Together with the effects of genetic erosion and unconscious selection, these changes may affect the success of reintroductions into natural habitats.


Asunto(s)
Digitalis , Endogamia , Polinización , Flores/genética , Variación Genética
10.
Plants (Basel) ; 11(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684197

RESUMEN

The orchid market is a dynamic horticultural business in which novelty and beauty command high prices. The two main interests are the development of flowers, from the miniature to the large and showy, and their fragrance. Overall organ size might be modified by doubling the chromosome number, which can be accomplished by careful study of meiotic chromosome disjunction in hybrids or species. Meiosis is the process in which diploid (2n) pollen mother cells recombine their DNA sequences and then undergo two rounds of division to give rise to four haploid (n) cells. Thus, by interfering in chromosome segregation, one can induce the development of diploid recombinant cells, called unreduced gametes. These unreduced gametes may be used for breeding polyploid progenies with enhanced fertility and large flower size. This review provides an overview of developments in orchid polyploidy breeding placed in the large context of meiotic chromosome segregation in the model plants Arabidopsis thaliana and Brassica napus to facilitate molecular translational research and horticultural innovation.

11.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563126

RESUMEN

Plant pathogens evade basal defense systems and attack different organs and tissues of plants. Genetic engineering of plants with genes that confer resistance against pathogens is very effective in pathogen control. Conventional breeding for disease resistance in ornamental crops is difficult and lagging relative to that in non-ornamental crops due to an inadequate number of disease-resistant genes. Therefore, genetic engineering of these plants with defense-conferring genes is a practical approach. We used rice BSR2 encoding CYP78A15 for developing transgenic Torenia fournieri Lind. lines. The overexpression of BSR2 conferred resistance against two devastating fungal pathogens, Rhizoctonia solani and Botrytis cinerea. In addition, BSR2 overexpression resulted in enlarged flowers with enlarged floral organs. Histological observation of the petal cells suggested that the enlargement in the floral organs could be due to the elongation and expansion of the cells. Therefore, the overexpression of BSR2 confers broad-spectrum disease resistance and induces the production of enlarged flowers simultaneously. Therefore, this could be an effective strategy for developing ornamental crops that are disease-resistant and economically more valuable.


Asunto(s)
Lamiales , Oryza , Resistencia a la Enfermedad/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Lamiales/genética , Oryza/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética
12.
Ecol Evol ; 12(3): e8668, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35261751

RESUMEN

Geographic differences in floral traits may reflect geographic differences in effective pollinator assemblages. Independent local adaptation to pollinator assemblages in multiple regions would be expected to cause parallel floral trait evolution, although sufficient evidence for this is still lacking. Knowing the intraspecific evolutionary history of floral traits will reveal events that occur in the early stages of trait diversification. In this study, we investigated the relationship between flower spur length and pollinator size in 16 populations of Aquilegia buergeriana var. buergeriana distributed in four mountain regions in the Japanese Alps. We also examined the genetic relationship between yellow- and red-flowered individuals, to see if color differences caused genetic differentiation by pollinator isolation. Genetic relationships among 16 populations were analyzed based on genome-wide single-nucleotide polymorphisms. Even among populations within the same mountain region, pollinator size varied widely, and the average spur length of A. buergeriana var. buergeriana in each population was strongly related to the average visitor size of that population. Genetic relatedness between populations was not related to the similarity of spur length between populations; rather, it was related to the geographic proximity of populations in each mountain region. Our results indicate that spur length in each population evolved independently of the population genetic structure but in parallel in response to local flower visitor size in different mountain regions. Further, yellow- and red-flowered individuals of A. buergeriana var. buergeriana were not genetically differentiated. Unlike other Aquilegia species in Europe and America visited by hummingbirds and hawkmoths, the Japanese Aquilegia species is consistently visited by bumblebees. As a result, genetic isolation by flower color may not have occurred.

13.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163160

RESUMEN

The flower is the main organ that produces essential oils in many plants. The yield of raw flowers and the number of secretory epidermal cells are the main factors for essential oil production. The cultivated rose species "Pingyin 1" in China was used to study the effect of RrANT1 on floral organ development. Eighteen AP2 transcription factors with dual AP2 domains were identified from Rosa rugosa genome. RrANT1 belonged to euANT. The subcellular localization results showed that RrANT1 protein is localized in the nucleus. The relative expression level of RrANT1 in the receptacle is higher than that in petals in the developmental stages, and both decreased from the initial phase to senescence. Compared with the RrANT1 expression level in petals in the blooming stage, RrANT1 expression level was significant in petals (~48.8) and highest in the receptacle (~102.5) in the large bud stage. It was only highly expressed in the receptacle (~39.4) in the blooming period. RrANT1 overexpression significantly increased petunia flower and leaf sizes (~1.2), as well as flower fresh weight (~30%). The total number of epidermis cells in the petals of overexpressing plants significantly increased (>40%). This study concluded that RrANT1 overexpression can increase the size and weight of flowers by promoting cell proliferation, providing a basis for creating new rose germplasm to increase rose and essential oil yield.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Petunia/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Factores de Transcripción/metabolismo , Flores/genética , Flores/metabolismo , Tamaño de los Órganos , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Factores de Transcripción/genética
14.
Ecol Evol ; 12(12): e9670, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590340

RESUMEN

Sexual dimorphism is expressed as different morphologies between the sexes of a species. Dimorphism is pronounced in gynodioecious populations which consist of female and hermaphrodite individuals. The small size of female flowers in gynodioecious species is often explained by resource re-allocation to seed production instead of large flowers. However, pollinator attraction is critical to female fitness, and factors other than resource savings are needed to explain the small size of female flowers. We hypothesized that the floral size dimorphism in the perennial gynodioecious Geranium sylvaticum (L.) is adaptive in terms of pollination. To test this "pollination hypothesis," we video recorded the small female and large hermaphrodite G. sylvaticum flowers. We parameterized floral visitor behavior when visiting a flower and calculated pollination probabilities by a floral visitor as the probability of touching anther and stigma with the same body part. Pollination probability differed in terms of flower sex and pollinator species. Bumblebees had the highest pollination probability. The small female flowers were more likely to receive pollen via several pollinator groups than the large hermaphrodite flowers. The pollen display of hermaphrodites matched poorly with the stigma display of hermaphrodites, but well with that of females. Although the small size of female flowers is commonly explained by resource re-allocation, we show that sexual dimorphism in flower size may increase the main reproductive functions of the females and hermaphrodites. Dimorphism increases pollination probability in females and fathering probability of the hermaphrodites likely driving G. sylvaticum populations towards dioecy.

15.
Planta ; 255(1): 18, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894276

RESUMEN

MAIN CONCLUSION: Elevated temperatures suppress cell division in developing petunia buds leading to smaller flowers, mediated by ABA. Flower size is one of the most important showy traits in determining pollinator attraction, and a central factor determining the quality of floricultural products. Whereas the adverse effects of elevated temperatures on showy traits have been described in detail, its underlining mechanisms is poorly understood. Here, we investigated the physiological mechanism responsible for the reduction of flower size in petunia under elevated temperatures. We found that the early stages of flower-bud development were most sensitive to elevated temperatures, resulting in a drastic reduction of flower diameter that was almost independent of flower load. We demonstrated that the temperature-mediated flower size reduction occurred due to a shorter growth period, and a lower rate of corolla cell division. Consistently, local application of cytokinin, a phytohormone that promotes cell division, resulted in recovery of flower dimensions when grown under elevated temperatures. Hormone analysis of temperature-inhibited flower buds revealed no significant changes in levels of cytokinin, and a specific increase of abscisic acid (ABA) levels, known to inhibit cell division. Moreover, local application of ABA on flower buds caused a reduction of flower dimensions as a result of lower levels of cell division, suggesting that ABA mediates the reduction of flower size at elevated temperatures. Taken together, our results shed light on the mechanism by which elevated temperatures decrease petunia flower size, and show that temperature-mediated reduction of flower size can be alleviated by increasing the cytokinin/ABA ratio.


Asunto(s)
Petunia , Ácido Abscísico , División Celular , Flores , Temperatura
16.
Insects ; 12(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070688

RESUMEN

(1) Background: Plants attract pollinators using several visual signals, mainly involving the display, size, shape, and color of flowers. Each signal is relevant for pollinators foraging for floral rewards, pollen, and nectar. Changes in floral signals and rewards can be induced by an increase in temperature, drought, or other abiotic stresses and are expected to increase as global temperatures rise. In this study, we explored how pollinators respond to modified floral signals and rewards following an increase in temperature; (2) Methods: We tested the effects of warmer temperatures on bee-pollinated starflower (Borago officinalis, Boraginaceae) and determined the behavior of one of its main pollinators, the buff-tailed bumblebee (Bombus terrestris). We measured visual floral traits (display and size) and rewards (nectar and pollen) for plants cultivated at 21 °C or 26 °C. We investigated bumblebee behavior by tracking insect visits in a binary choice experiment in an indoor flight arena; (3) Results: Plants cultivated at 26 °C exhibited a smaller floral area (i.e., corolla sizes summed for all flowers per plant, 34.4 ± 2.3 cm2 versus 71.2 ± 2.7 cm2) and a greater flower height (i.e., height of the last inflorescence on the stem, 87 ± 1 cm versus 75 ± 1 cm) compared to plants grown at 21 °C. Nectar production per flower was lower in plants grown at 26 °C than in plants grown at 21 °C (2.67 ± 0.37 µL versus 4.15 ± 0.22 µL), and bumblebees visited flowers from plants grown at 26 °C four times less frequently than they visited those from plants grown at 21 °C; (4) Conclusions: These results show that warmer temperatures affect floral signals and reduce overall floral resources accessible to pollinators. Thus, the global increases in temperature caused by climate change could reduce plant pollination rates and reproductive success by reducing flower visitation.

17.
BMC Ecol Evol ; 21(1): 64, 2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33894742

RESUMEN

BACKGROUND: Geographic differences in floral size sometimes reflect geographic differences in pollinator size. However, we know little about whether this floral size specialization to the regional pollinator size occurred independently at many places or occurred once and then spread across the distribution range of the plant species. RESULTS: We investigated the relationship between the local floral size of flowers and local pollinator size in 12 populations of Lamium album var. barbatum on two different mountains in the Japan Alps. Then, using 10 microsatellite markers, we analyzed genetic differentiation among the 12 populations. The results showed that local floral size was correlated with the average size of relevant morphological traits of the local pollinators: floral size was greater in populations visited frequently by the largest flower visitors, Bombus consobrinus queens, than it was in other populations. We also found that the degree of genetic similarity between populations more closely reflected interpopulation geographic proximity than interpopulation similarity in floral size. CONCLUSIONS: Although genetic similarity of populations was highly associated with geographic proximity, floral size varied independently of geographic proximity and was associated with local pollinator size. These results suggest that in L. album var. barbatum, large floral size evolved independently in populations on different mountains as a convergent adaptation to locally abundant large bumblebee species.


Asunto(s)
Lamiaceae , Polinización , Animales , Abejas , Flores , Japón , Fenotipo
18.
Planta ; 253(2): 50, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33506329

RESUMEN

MAIN CONCLUSION: Morpho-physiological changes were observed in Arabidopsis plants acclimated to long-term combined cold and water deficit stresses. Limiting growth and differences in bolting, flowering, and silique development were evidenced. In nature, plants are exposed to multiple and simultaneous abiotic stresses that influence their growth, development, and reproduction. In the last years, the study of combined stresses has aroused the interest to know the physiological and molecular responses, because these new stress conditions are probed to be different from the sum of the individual stress. We are interested in the study of the acclimation of plants growing under the combination of cold and water deficit stresses prevalent in cold-arid or semi-arid climates worldwide. We hypothesized that the reproduction of the acclimated plants will be compromised and affected. Arabidopsis plants were submitted to long-term combined stress from the beginning to the reproductive stage, when floral bud was visible, until the silique development. Our results demonstrate severe morpho-anatomical changes after acclimation to combined stress. Inflorescence stem morphology was altered having a delayed bolting and a limited growth. Flowering and silique formation were delayed, and a higher size in the corolla and the petals was observed. Flower and silique number were severely diminished as a result of combined stress, unlike acclimated plants to individual cold stress. These traits were recovered after deacclimation to optimal conditions and plants achieved similar silique production as control plants. The long-term stress results suggest that there is not a single dominant stress, but there is an alternating dominance depending on the structure or the plant stage development evaluated.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Reproducción , Agua
19.
Oecologia ; 197(4): 957-969, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32712874

RESUMEN

Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.


Asunto(s)
Rosa , Monoterpenos Acíclicos , Color , Peróxido de Hidrógeno , Longevidad , Monoterpenos , Filogenia
20.
Am J Bot ; 107(12): 1677-1692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315246

RESUMEN

PREMISE: We tested 25 classic and novel hypotheses regarding trait-origin, trait-trait, and trait-environment relationships to account for flora-wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. METHODS: We assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. RESULTS: Introduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. CONCLUSIONS: These findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora-wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.


Asunto(s)
Magnoliopsida , Flores , Magnoliopsida/genética , Fitomejoramiento , Polinización , Historia Reproductiva , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA