Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.402
Filtrar
1.
J Mol Graph Model ; 132: 108837, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39098150

RESUMEN

Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.

2.
Mol Divers ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096353

RESUMEN

Tuberculosis (TB) remains a critical health threat, particularly with the emergence of multidrug-resistant strains. This demands attention from scientific communities and healthcare professionals worldwide to develop effective treatments. The enhanced intracellular survival (Eis) protein is an acetyltransferase enzyme of Mycobacterium tuberculosis that functions by adding acetyl groups to aminoglycoside antibiotics, which interferes with their ability to bind to the bacterial ribosome, thereby preventing them from inhibiting protein synthesis and killing the bacterium. Therefore, targeting this protein accelerates the chance of restoring the aminoglycoside drug activity, thereby reducing the emergence of drug-resistant TB. For this, we have screened 406,747 natural compounds from the Coconut database against Eis protein. Based on MM/GBSA rescoring binding energy, the top 5 most prominent natural compounds, viz. CNP0187003 (- 96.14 kcal/mol), CNP0176690 (- 93.79 kcal/mol), CNP0136537 (- 92.31 kcal/mol), CNP0398701 (- 91.96 kcal/mol), and CNP0043390 (- 91.60 kcal/mol) were selected. These compounds exhibited the presence of a substantial number of hydrogen bonds and other significant interactions confirming their strong binding affinity with the Eis protein during the docking process. Subsequently, the MD simulation of these compounds exhibited that the Eis-CNP0043390 complex was the most stable, followed by Eis-CNP0187003 and Eis-CNP0176690 complex, further verified by binding free energy calculation, principal component analysis (PCA), and Free energy landscape analysis. These compounds demonstrated the most favourable results in all parameters utilised for this investigation and may have the potential to inhibit the Eis protein. There these findings will leverage computational techniques to identify and develop a natural compound inhibitor as an alternative for drug-resistant TB.

3.
R Soc Open Sci ; 11(7): 240465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086831

RESUMEN

The asymmetry between the left and right sides seems to be a general principle of organization of the nervous systems in Bilateria, providing the foundations for a plethora of leftward and rightward biases in behaviour as documented in species ranging from Caenorhabditis elegans nematodes to humans. Several theories have been put forward to account for the existence and maintenance in the evolution of the asymmetric organization of the brain at both individual and population levels. However, what is missing in theorizing about the evolution of brain asymmetry is an overarching general hypothesis that may subsume all different aspects of current models. Here, we tried to provide an overarching general framework based on the energy and free-energy minimization principle, which proved so valuable in other areas of neuroscience. We found that at the individual level the antisymmetric singlet configuration realizes the lowest energy state of the system, whereas at the group level, the spontaneous emergence of directional asymmetry arises as a consequence of the minimization of the free energy of the system, which guarantees its stability and equilibrium. We thus argue that the various phenomenological aspects of brain asymmetry that have been captured in biology-e.g. sparing of neural tissue, control of unitary motor responses and, at the population level, evolutionarily stable strategies described by mathematical games theory-may be thought of as the manifestation of a more general principle of energy minimization generating, among others, asymmetry of the brains.

5.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125791

RESUMEN

In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.


Asunto(s)
Carotenoides , Membrana Dobles de Lípidos , Carotenoides/química , Carotenoides/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Humanos , Simulación de Dinámica Molecular , Modelos Moleculares , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química
6.
J Biol Chem ; : 107648, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121998

RESUMEN

Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes of the ΔGs of the two reactions causes the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.

7.
Biosci Rep ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115563

RESUMEN

Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises of two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues). Despite its critical role in various cellular processes, the physical structure of TTF1 remains unsolved. Attempts to purify the functional TTF1 protein have been unsuccessful till date. Therefore, we focused on characterizing the Myb domain of this essential protein. We started with predicting a 3-D model of the Myb domain using homology modelling, and ab-initio method.  We then determined its stability through MD simulation in an explicit solvent. The model predicted is highly stable, which stabilizes at 200ns. To experimentally validate the computational model, we cloned and expressed the codon optimized Myb domain into a bacterial expression vector and purified the protein to homogeneity. Further, characterization of the protein shows that, Myb domain is predominantly helical (65%) and is alone sufficient to bind the Sal Box DNA. This is the first-ever study to report a complete in-silico model of the Myb domain, which is physically characterized. The above study will pave the way towards solving the atomic structure of this essential mammalian protein.

8.
Heliyon ; 10(15): e34762, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145021

RESUMEN

The thermodynamic characteristics of a pair-interacting hole gas localized in a Ge/Si lens-shaped quantum dot are studied. The pair-interaction potential is modeled by the oscillator function, which depends on the distance between the particles. The analytical form of the spectra makes it possible to calculate the partition function in Boltzmann approximation. Based on the partition function mean and free energies, heat capacity and entropy of the interacting gas are calculated. Interaction between particles substantially changes the behavior of the thermodynamic properties in comparison with the non-interacting gas case. In particular, the gas undergoes a first-order phase transition driven by the height of the upper (or lower) section of QD, resulting in a changing symmetry of the lens-shaped QD.

9.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124441

RESUMEN

This study aimed to evaluate the effect of airborne particle abrasion with different particles on the surface free energy, roughness, and biaxial flexural strength of a feldspathic ceramic by comparing it with hydrofluoric acid etching, the standard surface treatment, and polishing. Square-shaped feldspathic ceramic specimens (12 mm × 12 mm × 1.2 mm) were divided into subgroups as airborne particles abraded with alumina (AO3a, AO3b, AO25, AO50a, AO50b, AO90, AO110a, AO110b, AO120a, and AO120b), silica (SO50a, SO50b, SO100, and SO100/200), or nutshell granule (NS100/200), hydrofluoric acid etched, and polished (n = 12). Surface free energy (n = 5), roughness (n = 5), biaxial flexural strength (n = 12), and Weibull moduli (n = 12) were investigated. Data were evaluated with 1-way ANOVA and Tukey HSD tests, and possible correlations were investigated with Pearson's correlation (α = 0.05). SO100/200 mostly had lower surface free energy (p ≤ 0.011), and polishing and etching led to higher surface free energy than AO3a, AO3b, and AO120a (p ≤ 0.031). Polished, SO100, and SO50b specimens mostly had lower roughness and AO125 had the highest roughness (p ≤ 0.029). SO100/200 mostly had lower biaxial flexural strength (p ≤ 0.041), and etched specimens had higher biaxial flexural strength than AO120a, AO120b, and SO50b (p ≤ 0.043). AO3b had the highest (33.56) and AO120b had the lowest (11.8) Weibull modulus. There was a weak positive correlation between the surface free energy and the biaxial flexural strength (r = 0.267, p = 0.011). A larger particle size mostly resulted in higher roughness, which was also affected by the particle shape. Most of the test groups had similar biaxial flexural strength to that of the hydrofluoric acid-etched group. Therefore, for tested feldspathic ceramic, airborne particle abrasion with tested parameters may be a suitable alternative without causing any further damage.

10.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124901

RESUMEN

Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.


Asunto(s)
Cadenas de Markov , Simulación de Dinámica Molecular , Unión Proteica , Factores de Transcripción , Regulación Alostérica , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/antagonistas & inhibidores , Humanos , Sitios de Unión , Análisis de Componente Principal , Termodinámica , Proteínas que Contienen Bromodominio
11.
Artículo en Inglés | MEDLINE | ID: mdl-39149417

RESUMEN

Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in the assembly of protein-DNA complexes. We present a single-molecule fluorescence method to sensitively measure the local conformational fluctuations of exciton-coupled cyanine [(iCy3)2] dimer-labeled DNA fork constructs in which the dimer probes are placed at varying positions relative to the DNA fork junction. These systems exhibit spectroscopic signals that are sensitive to the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probe label positions. The (iCy3)2 dimer has one symmetric (+) and one anti-symmetric (-) exciton with respective transition dipole moments oriented perpendicular to one another. We excite single molecule samples using a continuous-wave, linearly polarized laser with its polarization direction rotated at a frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and anti-symmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the signal at the photon-counting level provides information about the distribution of local conformations and conformational dynamics. We analyze our data using a kinetic network model, which we use to parametrize the free energy surface of the system. In addition to observing DNA breathing at and near ss-dsDNA junctions, the approach can be used to study the effects of proteins that bind and function at these sites.

12.
Sci Rep ; 14(1): 15106, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956156

RESUMEN

We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.


Asunto(s)
Excipientes , Polisorbatos , Excipientes/química , Polisorbatos/química , Vitamina E/química , Tensoactivos/química , Pirrolidinas/química , Simulación de Dinámica Molecular , Termodinámica , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo
13.
Front Psychol ; 15: 1413111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966740

RESUMEN

The human need to find meaning in life and the human need for connection may be two sides of the same coin, a coin forged in the developmental crucible of attachment. Our need for meaningfulness can be traced to our developmental need for connection in the attachment relationship. The free energy principle dictates that in order to resist a natural tendency towards disorder self-organizing systems must generate models that predict the hidden causes of phenomenal experience. In other words, they must make sense of things. In both an evolutionary and ontogenetic sense, the narrative self develops as a model that makes sense of experience. However, the self-model skews the interpretation of experience towards that which is predictable, or already "known." One may say it causes us to "take things personally." Meaning is felt more acutely when defenses are compromised, when the narrative self is offline. This enables meaning-making that is less egocentrically motivated. Dreams, psychosis, and psychedelic states offer glimpses of how we make sense of things absent a coherent narrative self. This has implications for the way we understand such states, and lays bare the powerful reach of attachment in shaping what we experience as meaningful.

14.
Vaccine ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971664

RESUMEN

The development of effective vaccines against Hepatitis C Virus (HCV) remains a global health priority and challenge. In this study, we employed an integrative approach combining computational epitope prediction with experimental validation to identify immunogenic peptides targeting the E1 glycoprotein of HCV. In the present report, computational data from various epitope prediction algorithms such as IEDB and SYFPEITHI, followed by molecular dynamics (MD) simulations and immuno-informatics analysis is presented. Through computational screening, we identified potential epitope candidates, with QVRNSSGLY (P3) and QLFTFSPRH (P7) emerging as promising candidates. MD simulations revealed stable interactions between these epitopes and MHC molecule, further validated by free energy estimations using MMPBSA method. Immuno-informatics analysis supported these findings, showing high binding potential and immunogenicity scores for the selected peptides. Subsequent synthesis and characterization of epitope peptides confirmed their structural integrity and purity required for conducting immune activation assays. Experimental immunological assays carried out in this study involved epitope peptide induced activation of CD8 + and CD4 + T cells from healthy human subjects and HCV- recovered patients. Data from experimental validation revealed significant cytokine release upon exposure to epitope peptides, particularly TNF-a, IL-6, and GM-CSF, indicative of robust immune responses. Notably, peptides P3 and P7 exhibited the most pronounced cytokine induction profiles, underscoring their potential as vaccine candidates. Further investigations addressing the mechanism of action of these epitope peptides under preclinical and clinical settings may help in developing effective vaccine against HCV.

15.
Angew Chem Int Ed Engl ; : e202409527, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959351

RESUMEN

We investigate the inhibition mechanism between pomotrelvir and the SARS-CoV-2 main protease using molecular mechanics and quantum mechanics / molecular mechanics simulations. Alchemical transformations where each Pi group of pomotrelvir was transformed into its counterpart in nirmatrelvir were performed to unravel the individual contribution of each group to the binding and reaction processes. We have shown that while a γ-lactam ring is preferred at position P1, a δ-lactam ring is a reasonable alternative. For the P2 position, tertiary amines are preferred with respect to secondary amines. Flexible side chains at P2 position can disrupt the preorganization of the active site, favouring the exploration of non-reactive conformations. The substitution of the P2 group of pomotrelvir by that of nirmatrelvir resulted in a compound, named as C2, that presents better binding free energy and a higher population of reactive conformations in the Michaelis complex. Analysis of the chemical reaction to form the covalent complex has shown a similar reaction mechanism and activation free energies for pomotrelvir, nirmatrelvir and C2. We hope that these findings could be useful to design better inhibitors to fight present and future variants of SARS-CoV-2 virus.

16.
Methods Mol Biol ; 2780: 139-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987468

RESUMEN

Protein-protein binding affinity prediction is important for understanding complex biochemical pathways and to uncover protein interaction networks. Quantitative estimation of the binding affinity changes caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. The binding free energies of protein-protein complexes can be predicted using several computational tools. This chapter is a summary of software developed for the prediction of binding free energies for protein-protein complexes and their mutants.


Asunto(s)
Biología Computacional , Mutación , Unión Proteica , Proteínas , Programas Informáticos , Termodinámica , Proteínas/metabolismo , Proteínas/química , Proteínas/genética , Biología Computacional/métodos , Mapeo de Interacción de Proteínas/métodos , Humanos
17.
Pharmacol Res Perspect ; 12(4): e1244, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982716

RESUMEN

We hypothesize that a "Faustian bargain"-the trading of increased SARS-CoV2 viral infection with a concurrent potential for prevention of life-threatening lower lung infection explains the previous and future morbidity and mortality from COVID-19. Further, this trade-off is made feasible by fundamental principles of thermodynamics and receptor affinity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Termodinámica , Enzima Convertidora de Angiotensina 2/metabolismo
18.
Arch Biochem Biophys ; 759: 110088, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992456

RESUMEN

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.

19.
Methods Mol Biol ; 2821: 9-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997477

RESUMEN

B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).


Asunto(s)
Epítopos de Linfocito B , Péptidos , Programas Informáticos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Péptidos/química , Péptidos/inmunología , Humanos , Mapeo Epitopo/métodos , Unión Proteica , Biología Computacional/métodos
20.
Environ Technol ; : 1-9, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002156

RESUMEN

Wet scrubbing technology is an effective emission control technology for marine diesel engines. Nitric oxide (NO) is one of the main component of ship emissions, the sodium persulfate (Na2S2O8) can facilitate the NO mass transfer process to a rapid reaction. Falling film reactors are widely used in rapid gas-liquid reactions, however, the reaction characteristics of denitrification using Na2S2O8 solution in a falling film reactor are not clear, which were investigated in this paper. The factors of NO mass transfer flux were tested with the liquid-gas ratio of 15 L/m3. The effects of solution properties and temperatures on the reaction driving force were studied by calculating the chemical reaction equilibrium constants and Gibbs free energy changes. The results showed that the NO mass transfer flux increased with the increase of temperature, Na2S2O8 concentration, O2 concentration and NO concentration. NO mass transfer flux increased by 41.00% and then decreased by 2.12% as the pH value increased from 7 to 10 and then rising to 12. The Gibbs free energy changes of alkaline solutions were 114.22%-130.99% lower than those of acidic solution at 303-343 K, and the chemical reaction equilibrium constants were higher. Na2S2O8/seawater system has great application potential in marine exhaust gas purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA