Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39093274

RESUMEN

BACKGROUND: The evolution of myocardial scar and its arrhythmogenic potential postinfarct is incompletely understood. OBJECTIVES: This study sought to investigate scar and border zone (BZ) channels evolution in an animal ischemia-reperfusion injury model using late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). METHODS: Five swine underwent 90-minute balloon occlusion of the mid-left anterior descending artery, followed by LGE-CMR at day (d) 3, d30, and d58 postinfarct. Invasive electroanatomic mapping (EAM) was performed at 2 months. Topographical reconstructions of LGE-CMR were analyzed for left ventricular core and BZ scar, BZ channel geometry, and complexity, including transmurality, orientation, and number of entrances/exits. RESULTS: LVEF reduced from 48.0% ± 1.8% to 41.3% ± 2.3% postinfarct. Total scar mass reduced over time (P = 0.008), including BZ (P = 0.002) and core scar (P = 0.05). A total of 72 BZ channels were analyzed across all animals and timepoints. Channel length (P = 0.05) and complexity (P = 0.02) reduced progressively from d3 to d58. However, at d58, 64% of channels were newly formed and 36% were midmyocardial. Conserved channels were initially longer and more complex. All LGE-CMR channels colocalized to regions of maximal decrement on EAM, with significantly greater decrement (115 ± 31 ms vs 83 ± 29 ms; P < 0.001) and uncovering of split potentials (24.8% vs 2.6%; P < 0.001) within channels. In total, 3 of 5 animals had inducible VT and tended to have more channels with greater midmyocardial involvement and functional decrement than those without VT. CONCLUSIONS: BZ channels form early postinfarct and demonstrate evolutionary complexity and functional conduction slowing on EAM, highlighting their arrhythmogenic potential. Some channels regress in complexity and length, but new channels form at 2 months' postinfarct, which may be midmyocardial, reflecting an evolving, 3-dimensional substrate for VT. LGE-CMR may help identify BZ channels that may support VT early postinfarct and lead to sudden death.

3.
JACC Clin Electrophysiol ; 10(2): 206-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099880

RESUMEN

BACKGROUND: Accurate annotation of electrogram local activation time (LAT) is critical to the functional assessment of ventricular tachycardia (VT) substrate. Contemporary methods of annotation include: 1) earliest bipolar electrogram (LATearliest); 2) peak bipolar electrogram (LATpeak); 3) latest bipolar electrogram (LATlatest); and 4) steepest unipolar -dV/dt (LAT-dV/dt). However, no direct comparison of these methods has been performed in a large dataset, and it is unclear which provides the optimal functional analysis of the VT substrate. OBJECTIVES: This study sought to investigate the optimal method of LAT annotation during VT substrate mapping. METHODS: Patients with high-density VT substrate maps and a defined critical site for VT re-entry were included. All electrograms were annotated using 5 different methods: LATearliest, LATpeak, LATlatest, LAT-dV/dt, and the novel steepest unipolar -dV/dt using a dynamic window of interest (LATDWOI). Electrograms were also tagged as either late potentials and/or fractionated signals. Maps, utilizing each annotation method, were then compared in their ability to identify critical sites using deceleration zones. RESULTS: Fifty cases were identified with 1,.813 ± 811 points per map. Using LATlatest, a deceleration zone was present at the critical site in 100% of cases. There was no significant difference with LATearliest (100%) or LATpeak (100%). However, this number decreased to 54% using LAT-dV/dt and 76% for LATDWOI. Using LAT-dV/dt, only 33% of late potentials were correctly annotated, with the larger far field signals often annotated preferentially. CONCLUSIONS: Annotation with LAT-dV/dt and LATDWOI are suboptimal in VT substrate mapping. We propose that LATlatest should be the gold standard annotation method, as this allows identification of critical sites and is most suited to automation.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Humanos , Ablación por Catéter/métodos , Taquicardia Ventricular/cirugía , Arritmias Cardíacas , Electrocardiografía/métodos
6.
J Cardiovasc Electrophysiol ; 34(7): 1539-1548, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269230

RESUMEN

BACKGROUND: Atrial tachycardia (AT) is a commonly encountered rhythm disorder in patients with underlying atrial scar. The role of atrial late activation mapping during sinus rhythm to predict the critical isthmus (CI) of AT has yet to be systematically evaluated. We aimed to investigate the relationship between the functional substrate mapping (FSM) characteristics and the CI of reentrant ATs in patients with underlying atrial low-voltage areas. METHODS: Patients with history of left AT who underwent catheter ablation with 3D mapping using high-density mapping were enrolled. Voltage map and isochronal late activation mapping were created during sinus/paced rhythm to detect deceleration zones (DZ). Electrograms with continuous-fragmented morphology were also tagged. After induction of AT, activation mapping was performed to detect CI of the tachycardia. Atrial tachyarrhythmia (ATa) recurrence was defined as detection of atrial fibrillation or AT (≥30 s) during the follow-up. RESULTS: Among 35 patients [mean age: 62 ± 9, gender: 25 (71.5%) female] with left AT, a total of 42 reentrant ATs induced. Voltage mapping during sinus rhythm revealed low-voltage area of 37.1 ± 23.8% of the left atrium. The mean value of bipolar voltage, EGM duration, and conduction velocity during sinus rhythm corresponding to CI of ATs were 0.18 ± 0.12 mV, 133 ± 47 ms, and 0.12 ± 0.09 m/s, respectively. Total number of DZs per chamber was 1.5 ± 0.6, which were located in the low-voltage zone (<0.5 mV) detected by high-density mapping. All CIs of reentry were colocalized with DZs detected during FSM. The positive predictive value of DZs to detect CI of inducible ATs is 80.4%. Freedom from ATa after the index procedure was 74.3% during a mean follow-up of 12.2 ± 7.5 months. CONCLUSION: Our findings demonstrated the utility of FSM during sinus rhythm to predict the CI of AT. DZs displayed continuous-fragmented signal morphology with slow conduction which may guide to tailor ablation strategy in case of underlying atrial scar.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Taquicardia Supraventricular , Taquicardia Ventricular , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/cirugía , Humanos , Frecuencia Cardíaca/fisiología , Cicatriz , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Estudios Retrospectivos , Ecocardiografía Tridimensional
7.
Heart Rhythm O2 ; 4(2): 134-146, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873315

RESUMEN

In the setting of structural heart disease, ventricular tachycardia (VT) is typically associated with a re-entrant mechanism. In patients with hemodynamically tolerated VTs, activation and entrainment mapping remain the gold standard for the identification of the critical parts of the circuit. However, this is rarely accomplished, as most VTs are not hemodynamically tolerated to permit mapping during tachycardia. Other limitations include noninducibility of arrhythmia or nonsustained VT. This has led to the development of substrate mapping techniques during sinus rhythm, eliminating the need for prolonged periods of mapping during tachycardia. Recurrence rates following VT ablation are high; therefore, new mapping techniques for substrate characterization are required. Advances in catheter technology and especially multielectrode mapping of abnormal electrograms has increased the ability to identify the mechanism of scar-related VT. Several substrate-guided approaches have been developed to overcome this, including scar homogenization and late potential mapping. Dynamic substrate changes are mainly identified within regions of myocardial scar and can be identified as local abnormal ventricular activities. Furthermore, mapping strategies incorporating ventricular extrastimulation, including from different directions and coupling intervals, have been shown to increase the accuracy of substrate mapping. The implementation of extrastimulus substrate mapping and automated annotation require less extensive ablation and would make VT ablation procedures less cumbersome and accessible to more patients.

8.
JACC Clin Electrophysiol ; 9(1): 1-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697187

RESUMEN

BACKGROUND: Accurate annotation of local activation time is crucial in the functional assessment of ventricular tachycardia (VT) substrate. A major limitation of modern mapping systems is the standard prospective window of interest (sWOI) is limited to 490 to 500 milliseconds, preventing annotation of very late potentials (LPs). A novel retrospective window of interest (rWOI), which allows annotation of all diastolic potentials, was used to assess the functional VT substrate. OBJECTIVES: This study sought to investigate the utility of a novel rWOI, which allows accurate visualization and annotation of all LPs during VT substrate mapping. METHODS: Patients with high-density VT substrate maps and a defined isthmus were included. All electrograms were manually annotated to latest activation using a novel rWOI. Reannotated substrate maps were correlated to critical sites, with areas of late activation examined. Propagation patterns were examined to assess the functional aspects of the VT substrate. RESULTS: Forty-eight cases were identified with 1,820 ± 826 points per map. Using the novel rWOI, 31 maps (65%) demonstrated LPs beyond the sWOI limit. Two distinct patterns of channel activation were seen during substrate mapping: 1) functional block with unidirectional conduction into the channel (76%); and 2) wave front collision within the channel (24%). In addition, a novel marker termed the zone of early and late crowding was studied in the rWOI substrate maps and found to have a higher positive predictive value (85%) than traditional deceleration zones (69%) for detecting critical sites of re-entry. CONCLUSIONS: The standard WOI of contemporary mapping systems is arbitrarily limited and results in important very late potentials being excluded from annotation. Future versions of electroanatomical mapping systems should provide longer WOIs for accurate local activation time annotation.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Humanos , Ventrículos Cardíacos , Estudios Retrospectivos , Estudios Prospectivos , Lipopolisacáridos , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Taquicardia Ventricular/cirugía , Arritmias Cardíacas
9.
Indian Pacing Electrophysiol J ; 22(6): 273-285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36007824

RESUMEN

Catheter ablation for ventricular tachycardia (VT) in patients with structural heart disease is now part of standard care. Mapping and ablation of the clinical VT is often limited when the VT is noninducible, nonsustained or not haemodynamically tolerated. Substrate-based ablation strategies have been developed in an aim to treat VT in this setting and, subsequently, have been shown to improve outcomes in VT ablation when compared to focused ablation of mapped VTs. Since the initial description of linear ablation lines targeting ventricular scar, many different approaches to substrate-based VT ablation have been developed. Strategies can broadly be divided into three categories: 1) targeting abnormal electrograms, 2) anatomical targeting of conduction channels between areas of myocardial scar, and 3) targeting areas of slow and/or decremental conduction, identified with "functional" substrate mapping techniques. This review summarises contemporary substrate-based ablation strategies, along with their strengths and weaknesses.

10.
Arrhythm Electrophysiol Rev ; 10(1): 38-44, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33936742

RESUMEN

Post-infarct-related ventricular tachycardia (VT) occurs due to reentry over surviving fibres within ventricular scar tissue. The mapping and ablation of patients in VT remains a challenge when VT is poorly tolerated and in cases in which VT is non-sustained or not inducible. Conventional substrate mapping techniques are limited by the ambiguity of substrate characterisation methods and the variety of mapping tools, which may record signals differently based on their bipolar spacing and electrode size. Real world data suggest that outcomes from VT ablation remain poor in terms of freedom from recurrent therapy using conventional techniques. Functional substrate mapping techniques, such as single extrastimulus protocol mapping, identify regions of unmasked delayed potentials, which, by nature of their dynamic and functional components, may play a critical role in sustaining VT. These methods may improve substrate mapping of VT, potentially making ablation safer and more reproducible, and thereby improving the outcomes. Further large-scale studies are needed.

11.
JACC Clin Electrophysiol ; 6(14): 1783-1793, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33357574

RESUMEN

OBJECTIVES: The goal of this study was to evaluate the role of dynamic substrate changes in facilitating conduction delay and re-entry in ventricular tachycardia (VT) circuits. BACKGROUND: The presence of dynamic substrate changes facilitate functional block and re-entry in VT but are rarely studied as part of clinical VT mapping. METHODS: Thirty patients (age 67 ± 9 years; 27 male subjects) underwent ablation. Mapping was performed with the Advisor HD Grid multipolar catheter. A bipolar voltage map was obtained during sinus rhythm (SR) and right ventricular sense protocol (SP) single extra pacing. SR and SP maps of late potentials (LP) and local abnormal ventricular activity (LAVA) were made and compared with critical sites for ablation, defined as sites of best entrainment or pace mapping. Ablation was then performed to critical sites, and LP/LAVA identified by the SP. RESULTS: At a median follow-up of 12 months, 90% of patients were free from antitachycardia pacing (ATP) or implantable cardioverter-defibrillator shocks. SP pacing resulted in a larger area of LP identified for ablation (19.3 mm2 vs. 6.4 mm2) during SR mapping (p = 0.001), with a sensitivity of 87% and a specificity of 96%, compared with 78% and 65%, respectively, in SR. CONCLUSIONS: LP and LAVA observed during the SP were able to identify regions critical for ablation in VT with a greater accuracy than SR mapping. This may improve substrate characterization in VT ablation. The combination of ablation to critical sites and SP-derived LP/LAVA requires further assessment in a randomized comparator study.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Anciano , Ventrículos Cardíacos/cirugía , Humanos , Masculino , Taquicardia Ventricular/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA