Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
3D Print Addit Manuf ; 11(3): e1064-e1072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39359581

RESUMEN

Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes due to its simplicity and low initial and maintenance costs. However, good printing results such as high dimensionality, avoidance of cooling cracks, and warping are directly related to heat control in the process and require precise settings of printing parameters. Therefore, accurate prediction and understanding of temperature peaks and cooling behavior in a local area and in a larger part are important in FFF, as in other AM processes. To analyze the temperature peaks and cooling behavior, we simulated the heat distribution, including convective heat transfer, in a cuboid sample. The model uses the finite difference method (FDM), which is advantageous for parallel computing on graphics processing units and makes temperature simulations also of larger parts feasible. After the verification process, we validate the simulation with an in situ measurement during FFF printing. We conclude the process simulation with a parameter study in which we vary the function of the heat transfer coefficient and part size. For smaller parts, we found that the print bed temperature is crucial for the temperature gradient. The approximations of the heat transfer process play only a secondary role. For larger components, the opposite effect can be observed. The description of heat transfer plays a decisive role for the heat distribution in the component, whereas the bed temperature determines the temperature distribution only in the immediate vicinity of the bed. The developed FFF process model thus provides a good basis for further investigations and can be easily extended by additional effects or transferred to other AM processes.

2.
3D Print Addit Manuf ; 11(4): 1533-1544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39360136

RESUMEN

Fused filament fabrication (FFF) has opened new opportunities for the effortless fabrication of complex structures at low cost. The additively manufactured lattice structures have been widely used in different sectors. However, the parts fabricated through FFF suffered from poor surface and dimensional characteristics. These disadvantages have been overcome by using different post-processing techniques. The present investigation has been focused on the post-processing of flexible lattice structures through chemical treatment methods. The flexible lattice structures have been fabricated by using thermoplastic polyurethane material. Body-centered cubic lattice structures have been chosen for the present study. The fabricated lattice structures have been post-processed using dimethyl sulfoxide solvent through the chemical immersion method. The response characteristics chosen for the present study were surface roughness, compressive strength, and dimensional accuracy. The measurement has been taken before and after the chemical treatment method for comparison purpose. The results of experimental studies depicted that the proposed methodology significantly enhanced the surface quality and dimensional accuracy, whereas compressive strength has been observed to be slightly reduced after the post-processing method.

3.
Pharm Pat Anal ; 13(1-3): 45-51, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39316578

RESUMEN

Three-dimensional (3D) printing is one of the most flexible technologies for preparing tablets, offering controlled drug release profiles. The current patent describes the preparation of immediate-release 3D-printed tablets of hydrochlorothiazide to improve disintegration and dissolution profile. The patent involves the preparation of drug-loaded filament via hot-melt extrusion and utilizing the same filaments for printing 3D-printed tablets using fused deposition modeling. The tablets were printed with different shapes and sizes by incorporating channels within the tablet spaces, termed as gaplets. The introduction of channels within the tablet design improves the disintegration and dissolution profile of the drug significantly. The morphological characteristic of 3D-printed tablets was studied by using scanning electron microscopy and revealed the presence of gaplets in the tablets.


[Box: see text].


Asunto(s)
Liberación de Fármacos , Patentes como Asunto , Impresión Tridimensional , Comprimidos , Hidroclorotiazida/química , Hidroclorotiazida/administración & dosificación , Solubilidad , Preparaciones de Acción Retardada/química , Composición de Medicamentos/métodos
4.
Biomater Adv ; 166: 214039, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39326251

RESUMEN

The current gold-standard approach for addressing bone defects in load-bearing applications sees the use of either autographs or allographs. These solutions, however, have limitations as autographs and allographs carry the risk of additional trauma, the threat of disease transmission, and potential donor rejection. An attractive candidate for overcoming the challenges associated with the use of autographs and allographs is a 3D porous scaffold displaying the needed mechanical competency for use in load-bearing applications that can stimulate bone tissue regeneration and provide antibacterial capabilities. To date, no reports document a 3D porous scaffold that fully meets the criteria specified above. In this work, we show how the use of fused filament fabrication (FFF) 3D printing technology in combination with a bimodal distribution of Ag-doped bioactive glass-ceramic (Ag-BG) micro-sized particles can successfully deliver porous 3D scaffolds with attractive and reliable mechanical performance characteristics capable of stimulating bone tissue regeneration and the ability to provide inherent antibacterial properties. To characterize the reliability of the mechanical performance of the FFF-printed Ag-BG scaffolds, Weibull statistics were evaluated for both the compressive (N = 25; m = 13.6 ± 0.9) and flexural (N = 25; m = 7.3 ± 0.7) strengths. Methicillin-resistant Staphylococcus aureus (MRSA) was used both in planktonic and biofilm forms to highlight the advanced antibacterial characteristics of the FFF-printed Ag-BG scaffolds. Biological performance was evaluated in vitro through indirect exposure to human marrow stromal cells (hMSCs), where the FFF-printed Ag-BG scaffolds were found to provide an attractive environment for cell infiltration and mineralization. Our work demonstrates how fused filament fabrication technology can be used with bioactive and antibacterial materials such as Ag-BG to deliver mechanically competent porous 3D scaffolds capable of stimulating bone tissue regeneration while simultaneously providing antibacterial performance capabilities.

5.
Polymers (Basel) ; 16(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339120

RESUMEN

Additive manufacturing of composites offers advantages over metals since composites are lightweight, fatigue and corrosion-resistant, and show high strength and stiffness. This work investigates the tensile and flexural performance of continuous carbon-fiber reinforced (CCF) composites with different guide angles and number of layers. The cost and printing time analyses were also conducted. Tensile specimens with a contour-only specimen and one CCF layer with a 0° guide angle exhibited nearly comparable strength values. Increasing the number of CCF layers enhances the tensile properties. For the identical cost and reinforcement amount, 0°/0° provides a higher tensile strength and elastic modulus compared with 15°/-15°. The same phenomenon was observed for 15°/0°/-15° and 0°/0°/0°. The samples with one and two reinforcement layers had similar stiffness and maximum load values for flexural tests. For the samples with four layers, there was a considerable improvement in stiffness but a minor decrease in the maximum load.

6.
Polymers (Basel) ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274033

RESUMEN

Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was mixed with hydroxyapatite (HAp). Composites were developed at various concentrations (0.0-8.0 wt. %, 2.0 step), aiming to enhance the strength of PCL with a biocompatible additive in bioplotting. Initially, pellets were derived from the shredding of filaments extruded after mixing PCL and HAp at predetermined quantities for each composite. Specimens were then manufactured by bioplotting 3D printing. The samples were tested for their thermal and rheological properties and were also mechanically, morphologically, and chemically examined. The mechanical properties included tensile and flexural investigations, while morphological and chemical examinations were carried out employing scanning electron microscopy and energy dispersive spectroscopy, respectively. The structure of the manufactured specimens was analyzed using micro-computed tomography with regard to both their dimensional deviations and voids. PCL/HAp 6.0 wt. % was the composite that showed the most enhanced mechanical (14.6% strength improvement) and structural properties, proving the efficiency of HAp as a reinforcement filler in medical applications.

7.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274630

RESUMEN

Additive manufacturing (AM) allows the creation of customized designs for various medical devices, such as implants, casts, and splints. Amongst other AM technologies, fused filament fabrication (FFF) facilitates the production of intricate geometries that are often unattainable through conventional methods like subtractive manufacturing. This study aimed to develop a methodology for substituting a pathological talus bone with a personalized one created using additive manufacturing. The process involved generating a numerical parametric solid model of the specific anatomical region using computed tomography (CT) scans of the corresponding healthy organ from the patient. The healthy talus served as a mirrored template to replace the defective one. Structural simulation of the model through finite element analysis (FEA) helped compare and select different materials to identify the most suitable one for the replacement bone. The implant was then produced using FFF technology. The developed procedure yielded commendable results. The models maintained high geometric accuracy, while significantly reducing the computational time. PEEK emerged as the optimal material for bone replacement among the considered options and several specimens of talus were successfully printed.

8.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274814

RESUMEN

This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different thermoset resin systems (epoxy and polyurethane-based) using a customized FDM 3D printer equipped with a resin dispensing unit, the optimised design and TP-TS material combination was established for best mechanical performance. Under uniaxial tensile stress, the failure modes of TP gyroid structures with polyurethane-based composites included 'fiber pull-out', interfacial debonding and fiber breakage, while epoxy based mixed matrix composites with all design variants demonstrated brittle failure. Higher elongation (higher area under curve) was observed in 20% infilled gyroid patterned composite with polyurethane matrix indicating the capability of operation in mechanical shock absorption application. Electron microscopy-based fractography analysis revealed that thermoset matrix properties governed the fracture modes for the thermoplastic phase. This work focused on the strategic optimisation of both toughness and stiffness of mixed matrix composite components for rapid fabrication of construction materials.

9.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124339

RESUMEN

Fused filament fabrication (FFF) is a key extrusion-based additive manufacturing (AM) process for fabricating components from polymers and their composites. Functionally gradient materials (FGMs) exhibit spatially varying properties by modulating chemical compositions, microstructures, and design attributes, offering enhanced performance over homogeneous materials and conventional composites. These materials are pivotal in aerospace, automotive, and medical applications, where the optimization of weight, cost, and functional properties is critical. Conventional FGM manufacturing techniques are hindered by complexity, high costs, and limited precision. AM, particularly FFF, presents a promising alternative for FGM production, though its application is predominantly confined to research settings. This paper conducts an in-depth review of current FFF techniques for FGMs, evaluates the limitations of traditional methods, and discusses the challenges, opportunities, and future research trajectories in this emerging field.

10.
Polymers (Basel) ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125208

RESUMEN

Additive manufacturing (AM) technologies, including 3D mortar printing (3DMP), 3D concrete printing (3DCP), and Liquid Deposition Modeling (LDM), offer significant advantages in construction. They reduce project time, costs, and resource requirements while enabling free design possibilities and automating construction processes, thereby reducing workplace accidents. However, AM faces challenges in achieving superior mechanical performance compared to traditional methods due to poor interlayer bonding and material anisotropies. This study aims to enhance structural properties in AM constructions by embedding 3D-printed polymeric meshes in clay-based mortars. Clay-based materials are chosen for their environmental benefits. The study uses meshes with optimal geometry from the literature, printed with three widely used polymeric materials in 3D printing applications (PLA, ABS, and PETG). To reinforce the mechanical properties of the printed specimens, the meshes were strategically placed in the interlayer direction during the 3D printing process. The results show that the 3D-printed specimens with meshes have improved flexural strength, validating the successful integration of these reinforcements.

11.
Sci Rep ; 14(1): 19348, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164431

RESUMEN

3D printing technologies such as fused filament fabrication (FFF) offer great opportunities to enable the fabrication of complex geometries without access to a workshop or knowledge of machining. By adding filler materials to the raw filaments used for FFF, the material properties of the plastic can be adapted. With the addition of neutron absorbing particles, filaments can be created that enable 3D printing of neutron shielding with arbitrary geometry. Two materials for FFF are presented with different mixing ratios of hexagonal Boron nitride (h-BN) and Polylactic acid (PLA). BNPLA25 with 25 %wt h-BN and BNPLA35 with 35 %wt h-BN are compared to the commercially available Addbor N25 material. To qualify the applicability of BNPLA25 and BNPLA35 as shielding material for neutron instrumentation, such as neutron imaging, we investigated the overall neutron attenuation, the influence of non-optimized print settings, as well as characterized the incoherent neutron scattering and the microstructure using neutron imaging, and time-of-flight small-angle-neutron-scattering. Finally, the tensile strength of the material was determined in standardized tensile tests. The measured neutron attenuation shows excellent agreement with analytical calculations, thus validating both the material composition and the calculation method. Approximately 6 mm (8 mm) BNPLA35 are needed for 1 × 10 - 3 transmission of a cold (thermal) neutron beam. Lack of extrusion due to suboptimal print settings can be compensated by increased thickness, clearly visible defects can be mitigated by 11-18% increase in thickness. Incoherent scattering is shown to be strongly reduced compared to pure PLA. The tensile strength of the material is shown not to be impacted by the h-BN filler. The good agreement between the measured attenuation and calculation, combined with the adoption of safety factor enables the quick and easy development as well as the performance estimation of shielding components. BNPLA is uniquely suited for 3D printing neutron shielding because of the combination of non-abrasive h-BN particles in standard PLA, which results in a filament that can be printed with almost any off-the-shelf printer and virtually no prior experience in 3D printing. This mitigates the slightly lower attenuation observed as compared to filaments containing B 4 C , which is highly abrasive and requires extensive additive manufacturing experience.

12.
Polymers (Basel) ; 16(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39204568

RESUMEN

Polyetheretherketone is a promising material for implants due to its good mechanical properties and excellent biocompatibility. Its accessibility to a wide range of applications is facilitated by the ability to process it with an easy-to-use manufacturing process such as fused filament fabrication. The elimination of disadvantages associated with the manufacturing process, such as a poor surface quality, is a main challenge to deal with. As part of the mass finishing process, centrifugal disc finishing has demonstrated good results in surface optimization, making it a promising candidate for the post-processing of additively manufactured parts. The objective of this study is to identify the key parameters of the centrifugal disc finishing process on the waviness of additively manufactured PEEK specimens, which has not been investigated previously. The waviness of the specimen was investigated by means of confocal laser scanning microscopy (CLSM), while weight loss was additionally tracked. Six parameters were investigated: type, amount and speed of media, use of compound, amount of water and time. Type of media, time and speed were found to significantly influence waviness reduction and weight loss. Surface electron microscopy images demonstrated the additional effects of deburring and corner rounding. Results on previous studies with specimens made of metal showed similar results. Further investigation is required to optimize waviness reduction and polish parts in a second post-processing step.

13.
Mikrochim Acta ; 191(9): 539, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39147993

RESUMEN

3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers. Carbon black/polylactic acid filament was employed, and the design and several printing parameters were optimized to yield the maximum electroanalytical performance using the minimal amount of material. Print speed and extrusion width showed a critical influence on the electroanalytical performance of 3D-PES. Under optimized conditions, the fabrication procedure offered excellent reproducibility (RSD 1.3% in working electrode diameter), speed (< 3 min/unit), and costs (< 0.01 $ in material cost). The 3D-PES was successfully applied to the determination of phloridzin in apple juice. The analytical performance of 3D-PES was compared with an equivalent commercial on-drop screen-printed electrode, yielding similar precision and accuracy but lower sensitivity. However, 3D-PES provides interesting features such as recyclability, biodegradability, low-cost, and the possibility of being manufactured near the point of need, some of which meets several demands of Green Chemistry. This cost-effective printing approach is a green and promising alternative for manufacturing disposable and portable electroanalytical devices, opening new possibilities not only in on-site food analysis but also in point-of-care testing.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos , Jugos de Frutas y Vegetales , Poliésteres , Impresión Tridimensional , Hollín , Hollín/química , Poliésteres/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/economía , Jugos de Frutas y Vegetales/análisis , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/economía , Análisis de los Alimentos/métodos , Electrodos , Malus/química , Análisis Costo-Beneficio , Límite de Detección
14.
Sci Rep ; 14(1): 16275, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009739

RESUMEN

This study presented a comprehensive computational fluid dynamics-based model for fused filament fabrication (FFF) three-dimensional (3D) printing multiphase and multiphysics coupling. A model based on the framework of computational fluid dynamics was built, utilizing the front-tracking method for high precision of multiphase material interfaces, a fully resolved simulation at the mesoscale explores the underlying physical mechanism of the self-supported horizontal printing. The study investigated the influence of printing temperature and velocity on the FFF process, exhibiting a certain self-supporting forming ability over a specific range. The results indicated that during the printing of large-span horizontal extension structures, the bridge deck material transitions from initial straight extension to sagging deformation, ultimately adopting a curved shape. The straight extension distance is inversely proportional to the depth of the sagging deformation. Additionally, the study revealed that printing temperature primarily affected the curing time of the molten material, while printing velocity fundamentally affected the relaxation time of both thermal and dynamic characteristics of the material.

15.
Biomed Mater ; 19(5)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38986475

RESUMEN

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Fosfatos de Calcio , Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas , Osteoblastos , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Óxido de Zinc , Andamios del Tejido/química , Fosfatos de Calcio/química , Poliésteres/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células Madre Mesenquimatosas/citología , Óxido de Zinc/química , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ensayo de Materiales , Huesos , Regeneración Tisular Dirigida/métodos , Humanos , Animales , Fosfatasa Alcalina/metabolismo , Módulo de Elasticidad , Porosidad , Propiedades de Superficie
16.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065302

RESUMEN

This systematic review interrogates the literature to understand what is known about the environmental sustainability of fused filament fabrication, FFF (also known as fused deposition modeling, FDM), based on life cycle assessment (LCA) results. Since substantial energy demand is systematically addressed as one of the main reasons for ecological damage in FFF, mitigation strategies are often based on reducing the printing time (for example, adopting thicker layers) or the embodied energy per part (e.g., by nesting, which means by printing multiple parts in the same job). A key parameter is the infill degree, which can be adjusted to the application requirements while saving printing time/energy and feedstock material. The adoption of electricity from renewable resources is also expected to boost the sustainability of distributed manufacturing through FFF. Meanwhile, bio-based and recycled materials are being investigated as less impactful alternatives to conventional fossil fuel-based thermoplastic filaments.

17.
Polymers (Basel) ; 16(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065325

RESUMEN

The development of multi-material filaments has enabled fused filament fabrication-based additive manufacturing to address demand for high-performance lightweight multifunctional components. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene based filaments with metallic reinforcements of magnetic iron (MI), stainless steel (SS), bronze (Br), copper (Cu), Bismuth (Bi), and Tungsten (W) were investigated to elucidate their complex processing-structure-property relationships. The microstructure of 3D-printed materials were characterized by microscopy and analyzed to determine the metal cross-sectional area percentage and the relationship between metal reinforcement, the polymer matrix, and porosity. Compression testing was conducted in directions parallel and perpendicular to the build direction in order to evaluate the effect of orientation and metal reinforcement on the mechanical properties. 3D-printed specimens experienced either fracture through print layers or layer-wise interfacial rupture for loads applied perpendicular and parallel to the print layers, respectively. A dependence of yield strength on loading orientation was observed for Br-PLA, Cu-PLA, SS-PLA, Bi-ABS, and W-ABS; however, MI-PLA and pure ABS specimens did not exhibit this sensitivity. Metal reinforcement also influenced the magnitude of compressive yield strength, with MI-PLA and SS-PLA demonstrating increased strength over Br-PLA and Cu-PLA, while ABS demonstrated increased strength over Bi-ABS and W-ABS. These results demonstrate the importance of considering orientation in printing and applications, the trade-off between various metallic reinforcements for added multifunctionality, and the potential of these tailored polymer composites for novel 3D-printed structures.

18.
Glob Chall ; 8(7): 2300408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39006060

RESUMEN

This review aims to provide an overview of sustainable approaches that can be incorporated into well-known procedures for the development of materials, pre- and post-treatments, modifications, and applications of 3D-printed objects, especially for fused filament fabrication (FFF). Different examples of conductive and non-conductive bespoke filaments using renewable biopolymers, bioplasticizers, and recycled materials are presented and discussed. The main final characteristics of the polymeric materials achieved according to the feedstock, preparation, extrusion, and treatments are also covered. In addition to recycling and remanufacturing, this review also explores other alternative approaches that can be adopted to enhance the sustainability of methods, aiming to produce efficient and environmentally friendly 3D printed products. Adjusting printing parameters and miniaturizing systems are also highlighted in this regard. All these recommended strategies are employed to minimize environmental damage, while also enabling the production of high-quality, economical materials and 3D printed systems. These efforts align with the principles of Green Chemistry, Sustainable Development Goals (SDGs), 3Rs (Reduce, Reuse, Recycle), and Circular Economy concepts.

19.
Materials (Basel) ; 17(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893801

RESUMEN

This work investigated the impact and piercing load resistance (energy absorption capabilities) of 3D-printed composites plates manufactured by means of the Fused-Filament-Fabrication (FFF) technique. Two sets of reinforced composite plates were produced. The first set of plates was printed with short-carbon-fiber-reinforced polyamide-12, while the second set was reinforced with continuous fibers. The plates were tested with quasi-static indentation tests at various Span-to-Punch ratios and with three different indenter nose shapes (blunt, hemispherical, and conical). The quasi-static measurements were subsequently elaborated to estimate the energy absorption capability of the plates during a ballistic impact. The addition of continuous fibers increased the quasi-static energy absorption capability by 20-185% with respect to the short-fiber-reinforced plates. The quasi-static results showed that by including the continuous reinforcement in the plates, the normalized energy absorbed increased by an order of magnitude. Finally, a comparison with data from the literature concerning continuous-reinforced composite plates manufactured by means of traditional techniques was carried out. The comparison revealed that FFF-printed composite plates can compete with traditional composite ones in terms of both ballistic and quasi-static penetrating load conditions, even if limited by the lower fiber volume fraction. Thus, these findings confirm that this novel Additive Manufacturing technique is promising and worth investigating further.

20.
Materials (Basel) ; 17(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893943

RESUMEN

Additive manufacturing (AM) is often used to create designs inspired by topology optimization and biological structures, yielding unique cross-sectional geometries spanning across scales. However, manufacturing defects intrinsic to AM can affect material properties, limiting the applicability of a uniform material model across diverse cross-sections. To examine this phenomenon, this paper explores the influence of specimen size and layer height on the compressive modulus of polycarbonate (PC) and thermoplastic polyurethane (TPU) specimens fabricated using fused filament fabrication (FFF). Micro-computed tomography imaging and compression testing were conducted on the printed samples. The results indicate that while variations in the modulus were statistically significant due to both layer height and size of the specimen in TPU, variations in PC were only statistically significant due to layer height. The highest elastic modulus was observed at a 0.2 mm layer height for both materials across different sizes. These findings offer valuable insights into design components for FFF, emphasizing the importance of considering mechanical property variations due to feature size, especially in TPU. Furthermore, locations with a higher probability of failure are recommended to be printed closer to the print bed, especially for TPU, because of the lower void volume fraction observed near the heated print bed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA