Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Comput Biol Med ; 180: 108980, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137668

RESUMEN

Automatic tumor segmentation via positron emission tomography (PET) and computed tomography (CT) images plays a critical role in the prevention, diagnosis, and treatment of this disease via radiation oncology. However, segmenting these tumors is challenging due to the heterogeneity of grayscale levels and fuzzy boundaries. To address these issues, in this paper, an efficient model-informed PET/CT tumor co-segmentation method that combines fuzzy C-means clustering and Bayesian classification information is proposed. To alleviate the grayscale heterogeneity of multi-modal images, in this method, a novel grayscale similar region term is designed based on the background region information of PET and the foreground region information of CT. An edge stop function is innovatively presented to enhance the localization of fuzzy edges by incorporating the fuzzy C-means clustering strategy. To improve the segmentation accuracy further, a unique data fidelity term is introduced based on PET images by combining the distribution characteristics of pixel points in PET images. Finally, experimental validation on datasets of head and neck tumor (HECKTOR) and non-small cell lung cancer (NSCLC) demonstrated impressive values for three key evaluation metrics, including DSC, RVD and HD5, achieved impressive values of 0.85, 5.32, and 0.17, respectively. These compelling results indicate that image segmentation methods based on mathematical models exhibit outstanding performance in handling grayscale heterogeneity and fuzzy boundaries in multi-modal images.

2.
Front Comput Neurosci ; 18: 1425008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006238

RESUMEN

In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a nuanced understanding of uncertainty inherent in the image data. The measure of uncertainty is achieved through calculation of hesitation degree. The approach introduces a conditional spatial function alongside the intuitionistic membership matrix, enabling the consideration of spatial relationships within the image. Furthermore, by calculating weighted intuitionistic membership matrix, the algorithm gains the ability to adapt its smoothing behavior based on the local context. The main advantages are enhanced robustness with homogenous segments, lower sensitivity to noise, intensity inhomogeneity and accommodation of degree of hesitation or uncertainty that may exist in the real-world datasets. A comparative analysis of synthetic and real datasets of MR brain images proves the efficiency of the suggested approach over different algorithms. The paper investigates how the suggested research methodology performs in medical industry under different circumstances including both qualitative and quantitative parameters such as segmentation accuracy, similarity index, true positive ratio, false positive ratio. The experimental outcomes demonstrate that the suggested algorithm outperforms in retaining image details and achieving segmentation accuracy.

3.
Neural Netw ; 178: 106489, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959598

RESUMEN

Medical image segmentation is crucial for understanding anatomical or pathological changes, playing a key role in computer-aided diagnosis and advancing intelligent healthcare. Currently, important issues in medical image segmentation need to be addressed, particularly the problem of segmenting blurry edge regions and the generalizability of segmentation models. Therefore, this study focuses on different medical image segmentation tasks and the issue of blurriness. By addressing these tasks, the study significantly improves diagnostic efficiency and accuracy, contributing to the overall enhancement of healthcare outcomes. To optimize segmentation performance and leverage feature information, we propose a Neighborhood Fuzzy c-Means Multiscale Pyramid Hybrid Attention Unet (NFMPAtt-Unet) model. NFMPAtt-Unet comprises three core components: the Multiscale Dynamic Weight Feature Pyramid module (MDWFP), the Hybrid Weighted Attention mechanism (HWA), and the Neighborhood Rough Set-based Fuzzy c-Means Feature Extraction module (NFCMFE). The MDWFP dynamically adjusts weights across multiple scales, improving feature information capture. The HWA enhances the network's ability to capture and utilize crucial features, while the NFCMFE, grounded in neighborhood rough set concepts, aids in fuzzy C-means feature extraction, addressing complex structures and uncertainties in medical images, thereby enhancing adaptability. Experimental results demonstrate that NFMPAtt-Unet outperforms state-of-the-art models, highlighting its efficacy in medical image segmentation.


Asunto(s)
Lógica Difusa , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Diagnóstico por Imagen/métodos
4.
J Ultrasound Med ; 43(9): 1711-1722, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38873702

RESUMEN

OBJECTIVES: To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. METHODS: This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C-means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. RESULTS: The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value <.001), body length (ρ = 0.583, P value <.001), and gestational age (ρ = 0.557, P value <.001). CONCLUSION: These findings suggest that fuzzy C-means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.


Asunto(s)
Tibia , Ultrasonografía , Aprendizaje Automático no Supervisado , Humanos , Recién Nacido , Ultrasonografía/métodos , Femenino , Masculino , Tibia/diagnóstico por imagen , Tibia/fisiología , Fantasmas de Imagen , Algoritmos , Reproducibilidad de los Resultados
5.
J Bone Miner Res ; 39(7): 956-966, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38832703

RESUMEN

Low bone mineral density and impaired bone quality have been shown to be important prognostic factors for curve progression in adolescent idiopathic scoliosis (AIS). There is no evidence-based integrative interpretation method to analyze high-resolution peripheral quantitative computed tomography (HR-pQCT) data in AIS. This study aimed to (1) utilize unsupervised machine learning to cluster bone microarchitecture phenotypes on HR-pQCT parameters in girls with AIS, (2) assess the phenotypes' risk of curve progression and progression to surgical threshold at skeletal maturity (primary cohort), and (3) investigate risk of curve progression in a separate cohort of girls with mild AIS whose curve severity did not reach bracing threshold at recruitment (secondary cohort). Patients were followed up prospectively for 6.22 ± 0.33 years in the primary cohort (n = 101). Three bone microarchitecture phenotypes were clustered by fuzzy C-means at time of peripubertal peak height velocity (PHV). Phenotype 1 had normal bone characteristics. Phenotype 2 was characterized by low bone volume and high cortical bone density, and phenotype 3 had low cortical and trabecular bone density and impaired trabecular microarchitecture. The difference in bone quality among the phenotypes was significant at peripubertal PHV and continued to skeletal maturity. Phenotype 3 had significantly increased risk of curve progression to surgical threshold at skeletal maturity (odd ratio [OR] = 4.88; 95% CI, 1.03-28.63). In the secondary cohort (n = 106), both phenotype 2 (adjusted OR = 5.39; 95% CI, 1.47-22.76) and phenotype 3 (adjusted OR = 3.67; 95% CI, 1.05-14.29) had increased risk of curve progression ≥6° with mean follow-up of 3.03 ± 0.16 years. In conclusion, 3 distinct bone microarchitecture phenotypes could be clustered by unsupervised machine learning on HR-pQCT-generated bone parameters at peripubertal PHV in AIS. The bone quality reflected by these phenotypes was found to have significant differentiating risk of curve progression and progression to surgical threshold at skeletal maturity in AIS.


Adolescent idiopathic scoliosis (AIS) is an abnormal spinal curvature that commonly presents during puberty growth. Evidence has shown that low bone mineral density and impaired bone quality are important risk factors for curve progression in AIS. High-resolution peripheral quantitative computed tomography (HR-pQCT) has improved our understanding of bone quality in AIS. It generates a large amount of quantitative and qualitative bone parameters from a single measurement, but the data are not easy for clinicians to interpret and analyze. This study enrolled girls with AIS and used an unsupervised machine-learning model to analyze their HR-pQCT data at the first clinic visit. The model clustered the patients into 3 bone microarchitecture phenotypes (ie, phenotype 1: normal; phenotype 2: low bone volume and high cortical bone density; and phenotype 3: low cortical and trabecular bone density and impaired trabecular microarchitecture). They were longitudinally followed up for 6 years until skeletal maturity. We observed the 3 phenotypes were persistent and phenotype 3 had a significantly increased risk of curve progression to severity that requires invasive spinal surgery (odds ratio = 4.88, p = .029). The difference in bone quality reflected by these 3 distinct phenotypes could aid clinicians to differentiate risk of curve progression and surgery at early stages of AIS.


Asunto(s)
Progresión de la Enfermedad , Fenotipo , Escoliosis , Humanos , Escoliosis/diagnóstico por imagen , Escoliosis/patología , Adolescente , Femenino , Estudios Longitudinales , Densidad Ósea , Niño , Huesos/diagnóstico por imagen , Huesos/patología , Tomografía Computarizada por Rayos X , Factores de Riesgo
6.
Heliyon ; 10(9): e29045, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699035

RESUMEN

Since the start of the 21st century, there has been a rapid development of internet technology, causing electronic computers and smartphones to become increasingly popular. The e-commerce industry also experiences quick development. However, the recommendation technology of e-commerce progresses slowly, hindering it from keeping up with the changing times. To enhance the efficiency and accuracy of e-commerce recommender systems, this research introduces an e-commerce recommender system that utilizes an enhanced K-means clustering algorithm to manage commodity information. This method combines the K-means algorithm with a genetic algorithm by encoding the genetic algorithm, setting the initial population, defining the fitness function, and configuring other parameters. The results of the test indicated that the K-mean clustering algorithm and fuzzy C-mean algorithm had a recommendation accuracy of 87.9 % and 84.8 % respectively under the test dataset. The highest recommendation accuracy was observed from the improved K-mean clustering algorithm, which was 91.1 %. The convergence rate of the improved K-mean clustering algorithm was faster by 44 % compared to the traditional K-mean clustering algorithm and 73 % quicker than the fuzzy C-mean algorithm. The study's findings demonstrate that the refined K-means clustering algorithm greatly enhances the recommendation proficiency and precision of the e-commerce recommendation system, in comparison to other comparable algorithms. This research can potentially advance the e-commerce industry and stimulate its growth.

7.
Curr Med Imaging ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803183

RESUMEN

BACKGROUND: The growing rate of breast cancer necessitates immediate global attention. Mammography images are used to determine the stage of malignancy. Breast cancer stages must be identified in order to save a person's life. OBJECTIVE: This article's main goal is to identify different techniques to obtain the difference between two breast cancer mammography images taken of the same individual at different times. This is the first effort to identify breast cancer in mammography images using change detection techniques. The Mammogram Image Change Detection (ICD) technique is also a recent advancement to prevent breast cancer in the early stage and precancerous level in medical images. METHODS: The main purpose of this work is to observe the changes between breast cancer images in different screening periods using different techniques. Mammogram Breast Cancer Image Change Detection (MBCICD) methods usually start with a Difference Image (DI) and classify the pixels in the DI into changed and unaffected classes using unsupervised fuzzy c means (FCM) clustering methods based on texture features taken from the log and mean ratio difference pictures. Two operators, mean ratio and log ratio, were used to check the changes in the images. The Gabor wavelet is utilized as a feature extraction technique among several standards. Using the Gabor wavelet ratio operators is a useful method for altering the detection of breast cancer in mammography images. Currently, it is challenging to obtain real malignant images of the same person for testing or training. In this study, two images are utilized. To clearly see the changes, one is an image from the MIAS breast cancer mammography images dataset, and the other is a self-generated change image. RESULTS: The research aims to examine the image results and other quantitative analysis results of proposed change detection methods on cancer images. The Mean Ratio Accuracy result is 0.9738, and the Log ratio PCC is 0.9737. The classification results are the Log Ratio + Gabor Filter + FCM is 0.9737, and Mean Ratio +Gabor Filter + FCM is 0.9719. The mean Ratio Accuracy result is 0.9738, Log ratio is 0.9737. Log Ratio + Gabor Filter + FCM is 0.9737, Mean Ratio +Gabor Filter + FCM is 0.9719. Comparing the PCC of proposed change detection methods with the FDA-RMG method on the same dataset, the accuracy is 0.9481 only. CONCLUSION: The study concludes that variations in mammography breast cancer images could be successfully identified using the ratio operators with Gabor wavelet features.

8.
Network ; : 1-37, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804548

RESUMEN

Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.

9.
Bioengineering (Basel) ; 11(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790333

RESUMEN

BACKGROUND: The morphology and internal composition, particularly the nucleus-to-cross sectional area (NP-to-CSA) ratio of the lumbar intervertebral discs (IVDs), is important information for finite element models (FEMs) of spinal loadings and biomechanical behaviors, and, yet, this has not been well investigated and reported. METHODS: Anonymized MRI scans were retrieved from a previously established database, including a total of 400 lumbar IVDs from 123 subjects (58 F and 65 M). Measurements were conducted manually by a spine surgeon and using two computer-assisted segmentation algorithms, i.e., fuzzy C-means (FCM) and region growing (RG). The respective results were compared. The influence of gender and spinal level was also investigated. RESULTS: Ratios derived from manual measurements and the two computer-assisted algorithms (FCM and RG) were 46%, 39%, and 38%, respectively. Ratios derived manually were significantly larger. CONCLUSIONS: Computer-assisted methods provide reliable outcomes that are traditionally difficult for the manual measurement of internal composition. FEMs should consider the variability of NP-to-CSA ratios when studying the biomechanical behavior of the spine.

10.
J Environ Manage ; 359: 121054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728982

RESUMEN

Semi-arid regions present unique challenges for maintaining aquatic biological integrity due to their complex evolutionary mechanisms. Uncovering the spatial patterns of aquatic biological integrity in these areas is a challenging research task, especially under the compound environmental stress. Our goal is to address this issue with a scientifically rigorous approach. This study aims to explore the spatial analysis and diagnosis method of aquatic biological based on the combination of machine learning and statistical analysis, so as to reveal the spatial differentiation patterns and causes of changes of aquatic biological integrity in semi-arid regions. To this end, we have introduced an innovative approach that combines XGBoost-SHAP and Fuzzy C-means clustering (FCM), we successfully identified and diagnosed the spatial variations of aquatic biological integrity in the Wei River Basin (WRB). The study reveals significant spatial variations in species number, diversity, and aquatic biological integrity of phytoplankton, serving as a testament to the multifaceted responses of biological communities under the intricate tapestry of environmental gradients. Delving into the depths of the XGBoost-SHAP algorithm, we discerned that Annual average Temperature (AT) stands as the pivotal driver steering the spatial divergence of the Phytoplankton Integrity Index (P-IBI), casting a positive influence on P-IBI when AT is below 11.8 °C. The intricate interactions between hydrological variables (VF and RW) and AT, as well as between water quality parameters (WT, NO3-N, TP, COD) and AT, collectively sculpt the spatial distribution of P-IBI. The fusion of XGBoost-SHAP with FCM unveils pronounced north-south gradient disparities in aquatic biological integrity across the watershed, segmenting the region into four distinct zones. This establishes scientific boundary conditions for the conservation strategies and management practices of aquatic ecosystems in the region, and its flexibility is applicable to the analysis of spatial heterogeneity in other complex environmental contexts.


Asunto(s)
Aprendizaje Automático , Fitoplancton , Ríos , Monitoreo del Ambiente/métodos , Algoritmos
11.
J Med Imaging (Bellingham) ; 11(3): 034501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38737493

RESUMEN

Purpose: Current clinical assessment qualitatively describes background parenchymal enhancement (BPE) as minimal, mild, moderate, or marked based on the visually perceived volume and intensity of enhancement in normal fibroglandular breast tissue in dynamic contrast-enhanced (DCE)-MRI. Tumor enhancement may be included within the visual assessment of BPE, thus inflating BPE estimation due to angiogenesis within the tumor. Using a dataset of 426 MRIs, we developed an automated method to segment breasts, electronically remove lesions, and calculate scores to estimate BPE levels. Approach: A U-Net was trained for breast segmentation from DCE-MRI maximum intensity projection (MIP) images. Fuzzy c-means clustering was used to segment lesions; the lesion volume was removed prior to creating projections. U-Net outputs were applied to create projection images of both, affected, and unaffected breasts before and after lesion removal. BPE scores were calculated from various projection images, including MIPs or average intensity projections of first- or second postcontrast subtraction MRIs, to evaluate the effect of varying image parameters on automatic BPE assessment. Receiver operating characteristic analysis was performed to determine the predictive value of computed scores in BPE level classification tasks relative to radiologist ratings. Results: Statistically significant trends were found between radiologist BPE ratings and calculated BPE scores for all breast regions (Kendall correlation, p<0.001). Scores from all breast regions performed significantly better than guessing (p<0.025 from the z-test). Results failed to show a statistically significant difference in performance with and without lesion removal. BPE scores of the affected breast in the second postcontrast subtraction MIP after lesion removal performed statistically greater than random guessing across various viewing projections and DCE time points. Conclusions: Results demonstrate the potential for automatic BPE scoring to serve as a quantitative value for objective BPE level classification from breast DCE-MR without the influence of lesion enhancement.

12.
J Imaging Inform Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649551

RESUMEN

Structural and photometric anomalies in the brain magnetic resonance images (MRIs) affect the segmentation performance. Moreover, a sudden change in intensity between two boundaries of the brain tissues makes it prone to data uncertainty, resulting in the misclassification of the pixels lying near the cluster boundaries. The discrete cosine transform (DCT) domain-based filtering is an effective way to deal with structural and photometric anomalies, while the intuitionistic fuzzy C-means (IFCM) clustering can handle the uncertainty using the intuitionistic fuzzy set (IFS) theory. In this background, we propose two novel approaches, namely, the DCT-based intuitionistic fuzzy C-means (DCT-IFCM) and the DCT-based local information IFCM (DCT-LIFCM), which effectively deal with the Rician and Gaussian noises and also handle the data uncertainty problem to provide high segmentation accuracy. The DCT-IFCM approach performs the histogram-based segmentation, while the DCT-LIFCM uses the pixel-wise computation to include the spatial information. Although the DCT-LIFCM delivers slightly better performance than the DCT-IFCM, the latter is very fast in providing equally high segmentation accuracy. An exhaustive performance analysis is provided to demonstrate the superior performance of the proposed algorithms compared with the state-of-the-art algorithms, including those based on the DCT-based filtering approach and the IFS theory.

13.
Sci Rep ; 14(1): 8365, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600125

RESUMEN

In recent years Intelligent Transportation System (ITS) has been growing interest in the development of vehicular communication technology. The traffic in India shows considerable fluctuations owing to the static and dynamic characteristics of road vehicles in VANET (Vehicular Adhoc Network). These vehicles take up a convenient side lane position on the road, disregarding lane discipline. They utilize the opposing lane to overtake slower-moving vehicles, even when there are oncoming vehicles approaching. The primary objective of this study is to minimize injuries resulting from vehicle interactions in mixed traffic conditions on undivided roads. This is achieved through the implementation of the Modified Manhattan grid topology, which primarily serves to guide drivers in the correct path when navigating undivided roads. Furthermore, the Fuzzy C-Means algorithm (FCM) is applied to detect potential jamming attackers, while the Modified Fisheye State Routing (MFSR) Algorithm is employed to minimize the amount of information exchanged among vehicles. Subsequently, the Particle Swarm Optimization (PSO) algorithm is developed to enhance the accuracy of determining the coordinates of jamming attackers within individual clusters. The effectiveness of the outcomes is affirmed through the utilization of the Fuzzy C-Means algorithm, showcasing a notable 30% reduction in the number of attackers, along with the attainment of a 70% accuracy rate in this research endeavor.

14.
Neuroinformatics ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656595

RESUMEN

Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm's adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. Comparative assessments underscore esFCM's superior performance, particularly in scenarios involving added noise and bias fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.

15.
Bioengineering (Basel) ; 11(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534540

RESUMEN

There is no doubt that brain tumors are one of the leading causes of death in the world. A biopsy is considered the most important procedure in cancer diagnosis, but it comes with drawbacks, including low sensitivity, risks during biopsy treatment, and a lengthy wait for results. Early identification provides patients with a better prognosis and reduces treatment costs. The conventional methods of identifying brain tumors are based on medical professional skills, so there is a possibility of human error. The labor-intensive nature of traditional approaches makes healthcare resources expensive. A variety of imaging methods are available to detect brain tumors, including magnetic resonance imaging (MRI) and computed tomography (CT). Medical imaging research is being advanced by computer-aided diagnostic processes that enable visualization. Using clustering, automatic tumor segmentation leads to accurate tumor detection that reduces risk and helps with effective treatment. This study proposed a better Fuzzy C-Means segmentation algorithm for MRI images. To reduce complexity, the most relevant shape, texture, and color features are selected. The improved Extreme Learning machine classifies the tumors with 98.56% accuracy, 99.14% precision, and 99.25% recall. The proposed classifier consistently demonstrates higher accuracy across all tumor classes compared to existing models. Specifically, the proposed model exhibits accuracy improvements ranging from 1.21% to 6.23% when compared to other models. This consistent enhancement in accuracy emphasizes the robust performance of the proposed classifier, suggesting its potential for more accurate and reliable brain tumor classification. The improved algorithm achieved accuracy, precision, and recall rates of 98.47%, 98.59%, and 98.74% on the Fig share dataset and 99.42%, 99.75%, and 99.28% on the Kaggle dataset, respectively, which surpasses competing algorithms, particularly in detecting glioma grades. The proposed algorithm shows an improvement in accuracy, of approximately 5.39%, in the Fig share dataset and of 6.22% in the Kaggle dataset when compared to existing models. Despite challenges, including artifacts and computational complexity, the study's commitment to refining the technique and addressing limitations positions the improved FCM model as a noteworthy advancement in the realm of precise and efficient brain tumor identification.

16.
J Imaging Inform Med ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528288

RESUMEN

In this paper, a segmentation-based image fusion method is proposed for the fusion of MR and CT images to obtain a high contrast fused image that contains complementary information from both input images. The proposed method uses the fuzzy C-mean method to extract information about the skull from the CT image. This skull information is used to extract soft tissue information from the MR image. Both the skull information and the soft tissue information are then fused using the fusion rule. The efficiency of the proposed method over other state-of-the-art fusion methods is analyzed and compared using qualitative and quantitative analysis methods. Qualitative analysis shows the improvement in the contrast between the bone and the soft tissue using the proposed method over other state-of-the-art methods without introducing any artifacts or distortions. Classical and gradient-based quantitative analysis also show significant improvement in the fused image obtained using the proposed method over the five state-of-the-art methods. The percentage improvement in the standard deviation, average gradient, entropy, spatial frequency, QABF, and LABF of the proposed method over the best value obtained by the five state-of-the-art methods is 27.11%, 12.06%, 23.64%, 11.30%, 5.59%, and 13.70% respectively.

17.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475218

RESUMEN

Accurate and automatic first-arrival picking is one of the most crucial steps in microseismic monitoring. We propose a method based on fuzzy c-means clustering (FCC) to accurately divide microseismic data into useful waveform and noise sections. The microseismic recordings' polarization linearity, variance, and energy are employed as inputs for the fuzzy clustering algorithm. The FCC produces a membership degree matrix that calculates the membership degree of each feature belonging to each cluster. The data section with the higher membership degree is identified as the useful waveform section, whose first point is determined as the first arrival. The extracted polarization linearity improves the classification performance of the fuzzy clustering algorithm, thereby enhancing the accuracy of first-arrival picking. Comparison tests using synthetic data with different signal-to-noise ratios (SNRs) demonstrate that the proposed method ensures that 94.3% of the first arrivals picked have an error within 2 ms when SNR = -5 dB, surpassing the residual U-Net, Akaike information criterion, and short/long time average ratio approaches. In addition, the proposed method achieves a picking accuracy of over 95% in the real dataset tests without requiring labelled data.

18.
Sci Rep ; 14(1): 6290, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491186

RESUMEN

BC (Breast cancer) is the second most common reason for women to die from cancer. Recent workintroduced a model for BC classifications where input breast images were pre-processed using median filters for reducing noises. Weighed KMC (K-Means clustering) is used to segment the ROI (Region of Interest) after the input image has been cleaned of noise. Block-based CDF (Centre Distance Function) and CDTM (Diagonal Texture Matrix)-based texture and shape descriptors are utilized for feature extraction. The collected features are reduced in counts using KPCA (Kernel Principal Component Analysis). The appropriate feature selection is computed using ICSO (Improved Cuckoo Search Optimization). The MRNN ((Modified Recurrent Neural Network)) values are then improved through optimization before being utilized to divide British Columbia into benign and malignant types. However, ICSO has many disadvantages, such as slow search speed and low convergence accuracy and training an MRNN is a completely tough task. To avoid those problems in this work preprocessing is done by bilateral filtering to remove the noise from the input image. Bilateral filter using linear Gaussian for smoothing. Contrast stretching is applied to improve the image quality. ROI segmentation is calculated based on MFCM (modified fuzzy C means) clustering. CDTM-based, CDF-based color histogram and shape description methods are applied for feature extraction. It summarizes two important pieces of information about an object such as the colors present in the image, and the relative proportion of each color in the given image. After the features are extracted, KPCA is used to reduce the size. Feature selection was performed using MCSO (Mutational Chicken Flock Optimization). Finally, BC detection and classification were performed using FCNN (Fuzzy Convolutional Neural Network) and its parameters were optimized using MCSO. The proposed model is evaluated for accuracy, recall, f-measure and accuracy. This work's experimental results achieve high values of accuracy when compared to other existing models.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Colombia Británica
19.
Environ Res ; 251(Pt 1): 118577, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432567

RESUMEN

Due to the emergency environment pollution problems, it is imperative to understand the air quality and take effective measures for environmental governance. As a representative measure, the air quality index (AQI) is a single conceptual index value simplified by the concentrations of several routinely monitored air pollutants according to the proportion of various components in the air. With the gradual enhancement of awareness of environmental protection, air quality index forecasting is a key point of environment management. However, most of the traditional forecasting methods ignore the fuzziness of original data itself and the uncertainty of forecasting results which causes the unsatisfactory results. Thus, an innovative forecasting system combining data preprocessing technique, kernel fuzzy c-means (KFCM) clustering algorithm and fuzzy time series is successfully developed for air quality index forecasting. Concretely, the fuzzy time series that handle the fuzzy set is used for the main forecasting process. Then the complete ensemble empirical mode decomposition and KFCM are respectively developed for data denoising and interval partition. Furthermore, the interval forecasting method based on error distribution is developed to measure the forecasting uncertainty. Finally, the experimental simulation and evaluation system verify the great performance of proposed forecasting system and the promising applicability in a practical environment early warning system.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Predicción , Lógica Difusa , Contaminación del Aire/análisis , Predicción/métodos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Algoritmos
20.
Photodiagnosis Photodyn Ther ; 46: 104048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484830

RESUMEN

BACKGROUND: Breast cancer is a leading cause of cancer-related deaths among women worldwide. Early and accurate detection is crucial for improving patient outcomes. Our study utilizes Visible and Near-Infrared Hyperspectral Imaging (VIS-NIR HSI), a promising non-invasive technique, to detect cancerous regions in ex-vivo breast specimens based on their hyperspectral response. METHODS: In this paper, we present a novel HSI platform integrated with fuzzy c-means clustering for automated breast cancer detection. We acquire hyperspectral data from breast tissue samples, and preprocess it to reduce noise and enhance hyperspectral features. Fuzzy c-means clustering is then applied to segment cancerous regions based on their spectral characteristics. RESULTS: Our approach demonstrates promising results. We evaluated the quality of the clustering using metrics like Silhouette Index (SI), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI). The clustering metrics results revealed an optimal number of 6 clusters for breast tissue classification, and the SI values ranged from 0.68 to 0.72, indicating well-separated clusters. Moreover, the CHI values showed that the clusters were well-defined, and the DBI values demonstrated low cluster dispersion. Additionally, the sensitivity, specificity, and accuracy of our system were evaluated on a dataset of breast tissue samples. We achieved an average sensitivity of 96.83%, specificity of 93.39%, and accuracy of 95.12%. These results indicate the effectiveness of our HSI-based approach in distinguishing cancerous and non-cancerous regions. CONCLUSIONS: The paper introduces a robust hyperspectral imaging platform coupled with fuzzy c-means clustering for automated breast cancer detection. The clustering metrics results support the reliability of our approach in effectively segmenting breast tissue samples. In addition, the system shows high sensitivity and specificity, making it a valuable tool for early-stage breast cancer diagnosis. This innovative approach holds great potential for improving breast cancer screening and, thereby, enhancing our understanding of the disease and its detection patterns.


Asunto(s)
Neoplasias de la Mama , Imágenes Hiperespectrales , Espectroscopía Infrarroja Corta , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Imágenes Hiperespectrales/métodos , Espectroscopía Infrarroja Corta/métodos , Lógica Difusa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA