Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1396797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045318

RESUMEN

Introduction: Primary ciliary dyskinesia (PCD) is caused by the dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. This study aimed to map novel PCD variants and determine their pathogenicity in PCD patients in Kuwait. Methods: Herein, we present five PCD individuals belonging to a cohort of 105 PCD individuals recruited from different hospitals in Kuwait. Genomic DNAs from the family members were analysed to screen for pathogenic PCD variants. Transmission electron microscopy (TEM) and immunofluorescence (IF) analyses were performed on the nasal biopsies to detect specific structural abnormalities within the ciliated cells. Results: Genetic screening and functional analyses confirmed that the five PCD individuals carried novel pathogenic variants of DNAH5 causing PCD in three Arabic families. Of these, one multiplex family with two affected individuals showed two novel homozygous missense variants in DNAH5 causing PCD with situs inversus; another multiplex family with two affected individuals showed two newly identified compound heterozygous variants in DNAH5 causing PCD with situs solitus. In addition, novel heterozygous variants were identified in a child with PCD and situs solitus from a singleton family with unrelated parents. TEM analysis demonstrated the lack of outer dynein arms (ODAs) in all analysed samples, and IF analysis confirmed the absence of the dynein arm component of DNAH5 from the ciliary axoneme. Conclusion: The newly identified pathogenic variants of DNAH5 are associated with PCD as well as variable pulmonary clinical manifestations in Arabic families.

2.
J Clin Med ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37892643

RESUMEN

INTRODUCTION: Primary ciliary dyskinesia (PCD) is a congenital thoracic disorder caused by dysfunction of motile cilia, resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify causative defective genes in PCD-affected individuals in the Kuwaiti population. METHODS: A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was isolated using standard procedures. The DNA samples from all affected individuals were analyzed by whole exome sequencing (WES). Transmission electron microscopy (TEM) and immunofluorescent analysis (IF) were performed on samples obtained by nasal brushings to identify specific structural abnormalities within ciliated cells. RESULTS: Here, we present six multiplex families with 11 patients who all presented with typical PCD symptoms. Ten out of eleven patients inherited a 3 bp homozygous deletion of GAA in RSPH9, whereas the eleventh patients inherited this variant in trans with a frameshift deletion in RSPH9. Genetic results were confirmed by segregation analysis. The in-frame deletion of GAA in RSPH9 has previously been published as pathogenic in both annotated RSPH9 transcript variants (1 and 2). In contrast, the previously unpublished RSPH9 frameshift deletion identified in KU-15.IV2 impacts only RSPH9 transcript variant two. Regarding all 11 PCD individuals analyzed, IF results demonstrated absence of RSPH9 protein and TEM analysis showed the typical findings in RSPH9 mutant individuals. CONCLUSIONS: We present the largest cohort of PCD individuals affected by the founder in-frame deletion GAA in RSPH9. This founder variant is the most common PCD-causing variant in Bedouin Arabs in Kuwait.

3.
Front Genet ; 13: 1017280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303540

RESUMEN

Introduction: Primary ciliary dyskinesia (PCD) is caused by dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify disease causing genetic variants for PCD patients in the Kuwaiti population. Methods: A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was analysed for variant screening. Transmission electron microscopy (TEM) and immunofluorescent (IF) analyses were performed on nasal brushings to detect specific structural abnormalities within ciliated cells. Results: All the patients inherited the same founder variant in DNAI2 and exhibited PCD symptoms. TEM analysis demonstrated lack of outer dynein arms (ODA) in all analysed samples. IF analysis confirmed absence of DNAI1, DNAI2, and DNAH5 from the ciliary axoneme. Whole exome sequencing, autozygosity mapping and segregation analysis confirmed that seven patients carry the same homozygous missense variant (DNAI2:c.740G>A; p.Arg247Gln; rs755060592). Conclusion: DNAI2:c.740G>A is the founder variant causing PCD in patients belonging to a particular Arabian tribe which practices consanguineous marriages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA