Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Sci Rep ; 14(1): 18429, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117704

RESUMEN

Understanding the genotype-by-environment interaction (GEI) and considering it in the selection process is a sine qua non condition for the expansion of Brazilian eucalyptus silviculture. This study's objective is to select high-performance and stable eucalyptus clones based on a novel selection index that considers the Factor Analytic Selection Tools (FAST) and the clone's reliability. The investigation explores the nuances interplay of GEI and extends its insights by scrutinizing the relationship between latent factors and real environmental features. The analysis, conducted across seven trials in five Brazilian states involving 78 clones, employs FAST. The clonal selection was performed using an extended FAST index weighted by the clone's reliability. Further insights about GEI emerge from the integration of factor loadings with 25 environmental features through a principal component analysis. Ten clones, distinguished by high performance, stability, and reliability, have been selected across the target population of environments. The environmental features most closely associated with factor loadings, encompassing air temperature, radiation, and soil characteristics, emerge as pivotal drivers of GEI within this dataset. This study contributes insights to eucalyptus breeders, equipping them to enhance decision-making by harnessing a holistic understanding-from the genotypes under evaluation to the diverse environments anticipated in commercial plantations.


Asunto(s)
Eucalyptus , Fitomejoramiento , Eucalyptus/genética , Fitomejoramiento/métodos , Brasil , Interacción Gen-Ambiente , Toma de Decisiones , Genotipo , Ambiente , Reproducibilidad de los Resultados
2.
Heliyon ; 10(12): e32918, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988541

RESUMEN

Bread wheat is a vital staple crop worldwide; including in Ethiopia, but its production is prone to various environmental constraints and yield reduction associated with adaptation. To identify adaptable genotypes, a total of 12 bread wheat genotypes (G1 to G12) were evaluated for their genotype-environment interaction (GEI) and stability across three different environments for two years using Additive Main Effect and Multiplicative Interaction (AMMI) and genotype main effect plus genotype-by-environment interaction (GGE) biplots analysis. GEI is a common phenomenon in crop improvement and is of significant importance in genotype assessment and recommendation. According to combined analysis of variance, grain yield was considerably impacted by environments, genotypes, and GEI. AMMI and GGE biplots analysis also provided insights into the performance and stability of the genotypes across diverse environmental conditions. Among the 12 genotypes, G6 was selected by AMMI biplot analysis as adaptive and high-yielding genotype; G5 and G7 demonstrated high stability and minimal interaction with the environment, as evidenced by their IPCA1 values. G7 was identified as the most stable and high-yielding genotype. The GGE biplot's polygon view revealed that the highest grain yield was obtained from G6 in environment three (E3). E3 was selected as the ideal environment by the GGE biplot. The top three stable genotypes identified by AMMI stability value (ASV) were G5, G7, and G10, while the most stable genotype determined by Genotype Selection Index (GSI) was G7. Even though G6 was a high yielder, it was found to be unstable according to ASV and ranked third in stability according to GSI. Based on the study's findings, the GGE biplot genotype view for grain yield identified Tay genotype (G6) to be the most ideal genotype due to its high grain yield and stability in diverse environments. G7 showed similar characteristics and was also stable. These findings provide valuable insights to breeders and researchers for selecting high-yielding and stable, as well as high-yielding specifically adapted genotypes.

3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39028536

RESUMEN

With global warming, there are growing challenges for raising taurine and composite beef cattle populations in tropical regions, including elevated temperatures, limited forage availability, parasite infestation, and infectious diseases. These environmental factors can trigger specific physiological responses in the developing fetus, which may have long-term implications on its performance. Therefore, the main objective of this study was to assess the influence of naturally induced thermal stress during the gestation period on the subsequent performance of tropical composite beef cattle progeny. Furthermore, we aimed to investigate the impact of genotype-by-gestational thermal environment interaction (G×Eg) on traits under selection pressure in the breeding population. A total of 157,414 animals from 58 farms located in various Brazilian states were recorded for birth weight (BW), preweaning weight gain (PWG), yearling weight (YW), hip height (HH), scrotal circumference (SC), and days to first calving (DFC). We first applied a linear regression model to the BW data, which revealed that the last 40 d of gestation were suitable for calculating the mean temperature humidity index (THIg). Subsequent regression analyses revealed that for every 10-unit increase in THIg, detrimental effects of approximately 1.13% to 16.34% are expected for all traits evaluated. Genetic parameters were estimated through a reaction norm model using THIg as the environmental descriptor. The posterior means of heritability estimates (SD) were 0.35 (0.07), 0.25 (0.03), 0.31 (0.03), 0.37 (0.01), 0.29 (0.07), and 0.20 (0.09) for the direct effect of BW, PWG, YW, HH, SC, and DFC, respectively. These estimates varied along the range of THIg values, suggesting a variable response to selection depending on the thermal environment during gestation. Genetic correlation estimates between more divergent THIg values were low or negative for YW, PWG, and DFC, indicating that the best-performing individuals at low THIg values may not perform as well at high THIg values and vice versa. Overall, thermal stress during gestation impacts the future performance of beef cattle offspring. Our results indicate the need for developing effective breeding strategies that take into account G×Eg effects and the re-ranking of breeding animals along the THIg scale, particularly for traits such as DFC that are highly sensitive to thermal stress.


With global warming posing increasing challenges in tropical regions, this study aimed to assess the impact of thermal stress during gestation on the performance of composite beef cattle offspring. Environmental factors such as high temperatures, humidity, limited forage availability, and parasite infestation can elicit physiological responses in the developing fetus, affecting its long-term performance and welfare. Using the temperature humidity index (THIg) of the late gestation as a measure of thermal environment, a reaction norm model was applied to analyze the birth weight, preweaning weight gain, yearling weight, hip height, scrotal circumference, and days to first calving (DFC). Results revealed that increasing THIg values were associated with a detrimental effect in these traits. Genotype-by-environment interaction was found to significantly influence trait variability, with DFC showing the strongest effect. Negative genetic correlations were observed between divergent THIg values, suggesting that individuals performing well in mild thermal environments may not excel in high thermal stress conditions. The heritability estimates varied along the THIg scale, indicating that selection response may vary depending on the thermal environment during gestation. These findings emphasize the need for breeding strategies that account for genotype-by-environment effects and consider the impact of thermal stress on cattle performance.


Asunto(s)
Genotipo , Animales , Bovinos/genética , Bovinos/fisiología , Femenino , Embarazo , Brasil , Masculino , Clima Tropical , Peso al Nacer , Cruzamiento , Aumento de Peso , Temperatura
4.
Int J Biometeorol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922422

RESUMEN

Characterization of crop-growing environments in relation to crop's genotypic performance is crucial to harness positive genotype-by-environment interactions (GEI) in systematic breeding programs. Given that, the study aimed to delineate the impact of diverse environments on crop phenology and yield traits of dwarf-statured field pea, pinpointing location(s) favoring higher yield and distinctiveness within breeding lines. We tested twelve field pea breeding lines across twenty locations in India, covering Central Zone (CZ), North Western Plain Zone (NWPZ), North Eastern Plain Zone (NEPZ), and Northern Hill Zone (NHZ). Across these locations, maximum and minimum temperatures during flowering (TMAXF, TMINF) and reproductive period (TMAXRP, TMINRP) ranged 18.9-28.3, 3.3-18.0, 15.0-30.8, and 7.9-22.1oC, respectively. Meanwhile, notable variations in phenological and agronomic traits (coefficient of variation) were observed: flowering (31%), days to maturity (21%), reproductive period (18%), grain yield (48%), and 100-seed weight (18%). Combined ANOVA demonstrated an oversized impact of environment (81%) on yield, while genotype and GEI effects were 2% and 14%, respectively. The variables TMINF, TMINRP, and cumulative growing degree-day showed positive correlations with yield, while extended vegetative and maturity durations negatively influenced yield (p < 0.05). Additionally, linear mixed-models and PCA results explained that instability in crop phenology had significant influence on field pea yield. Seed weight was markedly varied within the locations (9.9-20.8 g) and both higher and lower seed weights were associated with lower yields (Optimal = 17.1 g). HA-GGE biplot-based on environment focus-scaling demonstrated three mega-environments and specific locations viz. Kota (CZ), SK Nagar (CZ), Raipur (CZ), Sehore (CZ), and Pantnagar (NWPZ) as the ideal testing-environments with high efficiency in selecting new genotypes with wider adaptability. The study findings highlight distinct impact of environments on crop phenology and agronomic traits of field pea (dwarf-type), hold substantial value in designing efficient field pea (dwarf-type) breeding program at mega-environment scale.

5.
Behav Genet ; 54(4): 342-352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38888866

RESUMEN

Haseman-Elston regression (HE-reg) has been known as a classic tool for detecting an additive genetic variance component. However, in this study we find that HE-reg can capture GxE under certain conditions, so we derive and reinterpret the analytical solution of HE-reg. In the presence of GxE, it leads to a natural discrepancy between linkage and association results, the latter of which is not able to capture GxE if the environment is unknown. Considering linkage and association as symmetric designs, we investigate how the symmetry can and cannot hold in the absence and presence of GxE, and consequently we propose a pair of statistical tests, Symmetry Test I and Symmetry Test II, both of which can be tested using summary statistics. Test statistics, and their statistical power issues are also investigated for Symmetry Tests I and II. Increasing the number of sib pairs is important to improve statistical power for detecting GxE.


Asunto(s)
Interacción Gen-Ambiente , Genotipo , Modelos Genéticos , Humanos , Ligamiento Genético , Análisis de Regresión , Simulación por Computador , Modelos Estadísticos
6.
Plants (Basel) ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891286

RESUMEN

To fulfill the growing demand for wheat consumption, it is important to focus on enhancement breeding strategies targeting key parameters such as yield, thousand kernel weight (TKW), quality characteristics including morphological traits, and protein content. These elements are key to the ongoing and future objectives of wheat breeding programs. Prioritizing these factors will effectively help meet the rising demand for wheat, especially given the challenges posed by unpredictable weather patterns. This study evaluated the morphological traits and protein content of 249 winter wheat varieties and advanced lines grown in eleven different environments in Morocco and Spain incorporating three varied sowing dates. The results showed considerable variability in morphological traits and protein content. Significant correlations were observed among various grain traits, with most grain morphological parameters exhibiting negative correlations with protein content. Differences across environments (p ≤ 0.01) in all traits, genotypes, and genotype by environment interaction were significant. A factorial regression analysis revealed significant impacts of environmental conditions on all grain morphological parameters, protein content, and TKW during the three growth stages. The study identified several high-performing and stable genotypes across diverse environments, providing valuable insights for wheat breeding programs such as genotypes 129, 234, 241, and 243. Genome-Wide Association Studies pinpointed 603 significant markers across 11 environments, spread across chromosomes. Among these, 400 markers were linked with at least two traits or observed in at least two different environments. Moreover, twelve marker-trait associations were detected that surpassed the Bonferroni correction threshold. These findings highlight the importance of targeted breeding efforts to enhance wheat quality and adaptability to different environmental conditions.

7.
Animals (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891742

RESUMEN

Complex traits are widely considered to be the result of a compound regulation of genes, environmental factors, and genotype-by-environment interaction (G × E). The inclusion of G × E in genome-wide association analyses is essential to understand animal environmental adaptations and improve the efficiency of breeding decisions. Here, we systematically investigated the G × E of growth traits (including weaning weight, yearling weight, 18-month body weight, and 24-month body weight) with environmental factors (farm and temperature) using genome-wide genotype-by-environment interaction association studies (GWEIS) with a dataset of 1350 cattle. We validated the robust estimator's effectiveness in GWEIS and detected 29 independent interacting SNPs with a significance threshold of 1.67 × 10-6, indicating that these SNPs, which do not show main effects in traditional genome-wide association studies (GWAS), may have non-additive effects across genotypes but are obliterated by environmental means. The gene-based analysis using MAGMA identified three genes that overlapped with the GEWIS results exhibiting G × E, namely SMAD2, PALMD, and MECOM. Further, the results of functional exploration in gene-set analysis revealed the bio-mechanisms of how cattle growth responds to environmental changes, such as mitotic or cytokinesis, fatty acid ß-oxidation, neurotransmitter activity, gap junction, and keratan sulfate degradation. This study not only reveals novel genetic loci and underlying mechanisms influencing growth traits but also transforms our understanding of environmental adaptation in beef cattle, thereby paving the way for more targeted and efficient breeding strategies.

8.
Sci Rep ; 14(1): 12254, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806593

RESUMEN

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Asunto(s)
Cacao , Cadmio , Fermentación , Cacao/metabolismo , Concentración de Iones de Hidrógeno , Cadmio/metabolismo , Gusto , Calor , Aromatizantes/metabolismo , Temperatura
9.
Physiol Behav ; 282: 114582, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750805

RESUMEN

Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Actividad Motora , Carrera , Animales , Ratones , Femenino , Peso Corporal/fisiología , Peso Corporal/genética , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/genética , Actividad Motora/fisiología , Carrera/fisiología , Privación de Alimentos/fisiología , Selección Artificial , Análisis de Varianza
10.
Front Plant Sci ; 15: 1373352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721333

RESUMEN

Tomato leaf curl New Delhi virus (TolCNDV) causes yellow mosaic disease, which poses a significant biotic constraint for sponge gourd cultivation, potentially resulting in crop loss of up to 100%. In the present investigation, 50 diverse genotypes were screened for 3 years under natural epiphytotic conditions. A subset of 20 genotypes was further evaluated across four different environments. The combined analysis of variance revealed a significant genotype × environment interaction. Eight genotypes consistently exhibited high and stable resistance in the preliminary screening and multi-environment testing. Furthermore, genotype plus genotype × environment interaction biplot analysis identified DSG-29 (G-3), DSG-7 (G-2), DSG-6 (G-1), and DSGVRL-18 (G-6) as the desirable genotypes, which have stable resistance and better yield potential even under diseased conditions. The genotype by yield × trait biplot analysis and multi-trait genotype-ideotype distance index analysis further validated the potential of these genotypes for combining higher yield and other desirable traits with higher resistance levels. Additionally, resistant genotypes exhibited higher activities of defense-related enzymes as compared to susceptible genotypes. Thus, genotypes identified in our study will serve as a valuable genetic resource for carrying out future resistance breeding programs in sponge gourd against ToLCNDV.

11.
Genes (Basel) ; 15(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790175

RESUMEN

Statistical genetic models of genotype-by-environment (G×E) interaction can be divided into two general classes, one on G×E interaction in response to dichotomous environments (e.g., sex, disease-affection status, or presence/absence of an exposure) and the other in response to continuous environments (e.g., physical activity, nutritional measurements, or continuous socioeconomic measures). Here we develop a novel model to jointly account for dichotomous and continuous environments. We develop the model in terms of a joint genotype-by-sex (for the dichotomous environment) and genotype-by-social determinants of health (SDoH; for the continuous environment). Using this model, we show how a depression variable, as measured by the Beck Depression Inventory-II survey instrument, is not only underlain by genetic effects (as has been reported elsewhere) but is also significantly determined by joint G×Sex and G×SDoH interaction effects. This model has numerous applications leading to potentially transformative research on the genetic and environmental determinants underlying complex diseases.


Asunto(s)
Interacción Gen-Ambiente , Genotipo , Modelos Genéticos , Humanos , Depresión/genética , Modelos Estadísticos , Masculino
12.
Data Brief ; 54: 110493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779411

RESUMEN

The dataset focuses on evaluating the performance of 17 sweet potato varieties (G) released by the Bangladesh Agricultural Research Institute (BARI) in terms of storage root yield and stability across five locations (E) in Bangladesh-Gazipur, Bogura, Jamalpur, Jashore, and Chattogram. The result revealed that BARI Mistialu-12 exhibited the highest average storage root yield at 45.35 t/ha, closely followed by BARI Mistialu-16 at 44.64 t/ha. Conversely, BARI Mistialu-1 had the lowest mean yield of 25.99 t/ha. Among the locations, Bogura recorded the highest mean root yield at 37.05 t/ha, while Chattogram exhibited the lowest at 31.27 t/ha. A combined analysis of variance revealed the presence of variability in storage root yield attributed to the genotype-location (environment) interaction (GEI). To delve deeper into this interaction, additive and multiplicative interaction effect models (AMMI) along with a linear mixed model (LMM) were employed for further investigations to confirm the significant contribution of GEI variance to root yield. The LMM results showed genetic variance (%), heritability (%), selection accuracy (%), and GEI correlation coefficients of 52.27, 54, 94, and 30, respectively. The AMMI analysis indicated that the first two principal components accounted for 74.60 % of GEI, with 20.16 % attributed to it. Assessing significant Interaction Principal Component Analyses (IPCAs) through the Weighted Average of Absolute Scores (WAAS) indicated that BARI Mistialu-12 is the most stable genotype, followed by BARI Mistialu-16 and BARI Mistialu-8, all displaying above-average root yield. The mega-environment analysis associated the highest root production of BARI Mistialu-11 and BARI Mistialu-2 with the Jamalpur location, while Gazipur, Bogura, and Jashore were linked with the superior performance of BARI Mistialu-12 and BARI Mistialu-16 genotypes. These findings are crucial for future breeding programs and the rapidly growing sweet potato industry, given the stable high-yield potential across diverse agro-ecological conditions. However, it is imperative to repeat the study to ensure reliable outcomes.

13.
Plant Sci ; 344: 112110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704095

RESUMEN

The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits. The multivariate GWAS model identified seven QTL, including five novel associations, that shed light on the genetic control of these traits. Furthermore, the research evaluates different genomic prediction models that considered genotype by environment and genotype by trait interactions. While colour- traits demonstrate strong predictive power, other traits display moderate accuracies across different models and scenarios aligned with the expectations when using small reference populations. When designing the cross-validation to predict new individuals, the accuracy of the best multi-trait model was significantly higher than all single-trait models for dimension traits, but not for the remaining traits, which showed similar performances. However, the cross-validation strategy that masked random phenotypic records (i.e., mimicking the unbalanced phenotypic records) showed significantly higher accuracy for all traits except acid contents. The findings underscore the importance of understanding genetic architecture for informed breeding strategies. The research emphasises the need for larger population sizes and multivariate models to enhance gene tagging power and predictive accuracy to advance date palm breeding programs. These findings support more targeted breeding in date palm, improving productivity and resilience to various environments.


Asunto(s)
Frutas , Estudio de Asociación del Genoma Completo , Phoeniceae , Frutas/genética , Phoeniceae/genética , Sitios de Carácter Cuantitativo/genética , Fenotipo , Genotipo , Genómica/métodos , Fitomejoramiento/métodos , Genoma de Planta
14.
Plants (Basel) ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732401

RESUMEN

Breeding for low-hydrogen-cyanide (HCN) varieties is a major objective of programs targeting boiled cassava food products. To enhance the breeding of low-HCN varieties, knowledge of genetic variation and trait heritability is essential. In this study, 64 cassava clones were established across four locations and evaluated for HCN using three HCN assessment methods: one with a 1 to 9 scale, on with a 0 ppm to 800 ppm scale, and a quantitative assay based on spectrophotometer readings (HCN_Spec). Data were also collected on the weather variables precipitation, relative humidity, and temperature. Highly significant differences were observed among clones (p < 0.001) and locations (p < 0.001). There was also significant clone-environment interactions, varying from p < 0.05 to p < 0.001. Locations Arua and Serere showed higher HCN scores among clones and were associated with significantly higher (p < 0.001) mean daily temperatures (K) and lower relative humidity values (%) across 12 h and 18 h intervals. Within locations, HCN broad sense heritability estimates ranged from 0.22 to 0.64, while combined location heritability estimates ranged from 0.14 to 0.32. Relationships between the methods were positive and strong (r = 0.75-0.92). The 1 to 9 scale is more accurate and more reproducible than either the 0 to 800 ppm scale or spectrophotometric methods. It is expected that the information herein will accelerate efforts towards breeding for low-HCN cassava varieties.

15.
J Anim Breed Genet ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808373

RESUMEN

In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (-0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.

16.
Front Plant Sci ; 15: 1248663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529058

RESUMEN

Introduction: In the Asian tropics, unpredictable weather increases the risk of abiotic stresses in sorghum areas, making it harder to meet predicted demand. Genotype-by environment interaction (GEI) and the lack of an effective multi-trait-based selection approach make it challenging to breed climateresilient forage sorghum that adapts to nonconventional areas. Methods: The present investigation carried out to estimate genetic parameters, inter trait associations, genetic gain under selection (SGs) of 95 diverse forage sorghum genotypes. Fourteen forage yield and other secondary traits were evaluated at five different growing seasons at two locations. Negative and positive genetic gains under selection were estimated across different growing seasons including Kharif, Rabi and Summer in the year 2020 and 2021. Results and discussion: The GEI effects were significant (P < 0.001) for all the studied traits. The multi trait based stability indices have been said to assist breeders in ensuring sustained progress in primary traits likeforage yield without sacrificing genetic advancement in secondary traits. Fourteen genotypes were selected through each evaluation methods including genotype - ideotype distance index (MGIDI), multi-trait stability index (MTSI), multi-trait stability and mean performance (MTMPS) and multi-trait index based on factor analysis and genotype-ideotype distance (FAIBLUP Index), assuming 15% selection intensity. According to MGIDI, the selected genotypes exhibited desired positive genetic gains for dry forage yield per plant, inter-nodal length, green forage yield per plant, and plant height and negative genetic gains for days to 50% flowering. The strength and weakness plot is a potential graphical tool as portrayed by MGIDI, to identify and develop desirable genotype for particular environment. Two genotypes, G36 (302B) and G89 (348B) were found to be common across all four evaluation methods based on all the studied traits. Background: Multi-trait stability evaluation approaches are reliable and accessible for selecting multiple traits under varied testing environments with low multicollinearity issues. These tools proved effective in enhancing selection strategies and optimising breeding schemes for the development of climate-resilient forage sorghum genotypes. The aforementioned genotypes were found to be the most reliable, high-yielding, and earlymaturing and could be suggested for variety and hybrid development and ideotype breeding programmes to ensure the food and nutritional security.

17.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460112

RESUMEN

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micosis , Estudio de Asociación del Genoma Completo , Arabidopsis/microbiología , Presión Osmótica , Estrés Fisiológico/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética
18.
Mol Ecol ; 33(6): e17295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396362

RESUMEN

Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σA 2 ), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σA 2 across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σA 2 , and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.


Asunto(s)
Ecosistema , Estudio de Asociación del Genoma Completo , Humanos , Animales , Evolución Biológica , Densidad de Población , Vertebrados , Dinámica Poblacional
19.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38381593

RESUMEN

Identifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse parents to 3 elite parents from West and Central Africa-back-cross nested association mapping. The population was phenotyped in environments characterized by differences in photoperiod, rainfall pattern, temperature levels, and soil fertility. To integrate the multiparental and multi-environmental dimension of our data we proposed a new approach for quantitative trait loci (QTL) detection and parental effect estimation. We extended our model to estimate QTL effect sensitivity to environmental covariates, which facilitated the integration of envirotyping data. Our models allowed spatial projections of the QTL effects in agro-ecologies of interest. We utilized this strategy to analyze the genetic architecture of flowering time and plant height, which represents key adaptation mechanisms in environments like West Africa. Our results allowed a better characterization of well-known genomic regions influencing flowering time concerning their response to photoperiod with Ma6 and Ma1 being photoperiod-sensitive and the region of possible candidate gene Elf3 being photoperiod-insensitive. We also accessed a better understanding of plant height genetic determinism with the combined effects of phenology-dependent (Ma6) and independent (qHT7.1 and Dw3) genomic regions. Therefore, we argue that the West and Central Africa-back-cross nested association mapping and the presented analytical approach constitute unique resources to better understand adaptation in sorghum with direct application to develop climate-smart varieties.


Asunto(s)
Sorghum , Sorghum/genética , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Fenotipo , Grano Comestible/genética
20.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243613

RESUMEN

Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tetraploidía , Fenotipo , Genotipo , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA