Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 990
Filtrar
1.
Evodevo ; 15(1): 13, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363199

RESUMEN

BACKGROUND: Previous studies have reported that periderm (the outer ectodermal layer) in zebrafish partially expands into the mouth and pharyngeal pouches, but does not reach the medial endoderm, where the pharyngeal teeth develop. Instead, periderm-like cells, arising independently from the outer periderm, cover prospective tooth-forming epithelia and are crucial for tooth germ initiation. Here we test the hypothesis that restricted expansion of periderm is a teleost-specific character possibly related to the derived way of early embryonic development. To this end, we performed lineage tracing of the periderm in a non-teleost actinopterygian species possessing pharyngeal teeth, the sterlet sturgeon (Acipenser ruthenus), and a sarcopterygian species lacking pharyngeal teeth, the axolotl (Ambystoma mexicanum). RESULTS: In sturgeon, a stratified ectoderm is firmly established at the end of gastrulation, with minimally a basal ectodermal layer and a surface layer that can be homologized to a periderm. Periderm expands to a limited extent into the mouth and remains restricted to the distal parts of the pouches. It does not reach the medial pharyngeal endoderm, where pharyngeal teeth are located. Thus, periderm in sturgeon covers prospective odontogenic epithelium in the jaw region (oral teeth) but not in the pharyngeal region. In axolotl, like in sturgeon, periderm expansion in the oropharynx is restricted to the distal parts of the opening pouches. Oral teeth in axolotl develop long before mouth opening and possible expansion of the periderm into the mouth cavity. CONCLUSIONS: Restricted periderm expansion into the oropharynx appears to be an ancestral feature for osteichthyans, as it is found in sturgeon, zebrafish and axolotl. Periderm behavior does not correlate with presence or absence of oral or pharyngeal teeth, whose induction may depend on 'ectodermalized' endoderm. It is proposed that periderm assists in lumenization of the pouches to create an open gill slit. Comparison of basal and advanced actinopterygians with sarcopterygians (axolotl) shows that different trajectories of embryonic development converge on similar dynamics of the periderm: a restricted expansion into the mouth and prospective gill slits.

2.
Microbiol Spectr ; : e0029524, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324788

RESUMEN

Recent advances in sequencing methods have greatly expanded the knowledge of teleost-associated microorganisms. While fish-gut microbiomes are comparatively well studied, less attention has gone toward other, external organ-microbiome associations. Gills are particularly interesting to investigate due to their functions in gas exchange, osmoregulation, and nitrogen excretion. We recently discovered a branchial symbiosis between nitrogen-cycling bacteria and teleosts (zebrafish and carp), in which ammonia-oxidizing Nitrosomonas and denitrifying bacteria together convert toxic ammonia excreted by the fish into harmless dinitrogen (N2) gas. This symbiosis can function as a "natural biofilter" in fish gills and can potentially occur in all ammonotelic fish species, but it remains unknown how widespread this symbiosis is. In this study, we analyzed all publicly available gill microbiome data sets and checked for the presence of Nitrosomonas. We discovered that more than half of the described fish gill microbiomes contain 16S rRNA gene sequences of ammonia-oxidizing bacteria (AOB). The presence of gill-specific AOB was shown in both wild and aquacultured fish, as well as in marine and freshwater fish species. Based on these findings, we propose that ammonia oxidizers are widespread in teleost fish gills. These gill-associated AOB can significantly affect fish nitrogen excretion, and the widespread nature of this association suggests that the gill-associated AOB can have similar impacts on more fish species. Future research should address the contribution of these microorganisms to fish nitrogen metabolism and the fundamental characteristics of this novel symbiosis.IMPORTANCERecent advances in sequencing have increased our knowledge of teleost-associated microbiota, but the gill microbiome has received comparatively little attention. We recently discovered a consortium of nitrogen-cycling bacteria in the gills of common carp and zebrafish, which are able to convert (toxic) ammonia into harmless dinitrogen gas. These microorganisms thus function as a natural nitrogen biofilter. We analyzed all available gill microbiome data sets to determine how widespread gill-associated ammonia-oxidizing bacteria (AOB) are. More than half of the data sets contained AOB, representing both aquacultured and wild fish from freshwater and marine habitats. In total, 182 amplicon sequencing variants were obtained, of which 115 were found specifically in the gills and not the environmental microbiomes. As gill-associated AOB are apparently widespread in teleost fish, it is important to study their impact on host nitrogen excretion and the potential to reduce ammonia accumulation in (recirculating) aquaculture of relevant fish species.

3.
Heliyon ; 10(17): e37331, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296175

RESUMEN

The elasmobranch population is declining in the Bay of Bengal of Bangladesh due to large-mesh gill net fishing, locally known as the Lakkha net, which primarily targets Indian threadfin (Leptomelanosoma indicum). This study was the first attempt to identify megafaunal bycatch in Lakkha fishing and assess its vulnerability using Productivity Susceptibility Analysis. A total of 40 elasmobranch bycatch species were identified, with sharks comprising 13 species from three families, while 27 rays belonged to six families, with the majority belonging to the Myliobatiformes order (60 %). Productivity and susceptibility scores were assigned to all identified species, with values ranging from 1.27 to 2.73 and 1.50 to 2.63, respectively. The target Lakkha fish exhibited the highest susceptibility score, followed by several pelagic sharks and eagle rays. Vulnerability assessment revealed that 31.7 % (n = 13) of species were highly vulnerable, while 43.9 % (n = 18) were classified as moderate, and 24.4 % (n = 10) were considered to have low vulnerability. All the high-risk megafauna species (n = 13) are classified as threatened by the global IUCN Red List. Sensitivity analysis highlighted susceptibility as a major contributor to species' vulnerability. Alterations in susceptibility scores led to significant changes in the vulnerability status of many species. The overall data quality assessment indicated moderate data quality across species, with variability observed between productivity (76 % of species received a poor data quality score) and susceptibility attributes. However, vulnerability of these species can be reduced through adequate gear modification, shorter net deployment periods, adoption of safe discharge techniques, identification of critical habitats, and establishment of marine protected areas within this region. This study provides valuable insights into the species composition and vulnerability of elasmobranchs in the Lakkha gill net fishery, emphasizing the need for conservation measures to mitigate bycatch impacts on threatened species.

4.
Fish Physiol Biochem ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222227

RESUMEN

To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions-normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)-to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.

5.
Animals (Basel) ; 14(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272272

RESUMEN

Culters are a popular and economically important carnivorous freshwater fish, widely distributed in rivers, lakes, and reservoirs in China. An investigation of Myxozoa was conducted to enhance the understanding of Myxozoan diversity in Culters in China, as only 15 Myxosporean species have been previously reported in 6 Culters species. A new species with typical Myxobolus characteristics was discovered exclusively in the gills of Chanodichthys dabryi, Bleeker, 1871, and no other species were found in other Culters fish or organs. The new species elicited whitish plasmodia in the serosa layer of the gill arch, with no distinct inflammatory reaction observed. This species is morphologically different from all reported Myxobolus spp. from Culters, differing in plasmodium and spore size, as well as the coils of polar filaments. Molecular analysis further supports that it does not match any sequences available in GenBank. Therefore, we identified it as a new species and named it Myxobolus dabryi n. sp.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39250544

RESUMEN

To maintain internal ion balance in marine environments, teleost fishes leverage seawater (SW)-type ionocytes to actively secrete Na+ and Cl- into the environment. It is well established that SW-type ionocytes utilize apically expressed cystic fibrosis transmembrane conductance regulator 1 (Cftr1) as a conduit for Cl- to exit the gill. Here, we investigated whether the Ca2+-activated Cl- channel, anoctamin 1 (Ano1), provides an additional path for Cl--secretion in euryhaline mummichogs (Fundulus heteroclitus). Two ano1 gene isoforms, denoted ano1.1a and -1.1b, exhibited higher expression in the gill and opercular epithelium of mummichogs long-term acclimated to SW versus fresh water (FW). Branchial ano1.1b and cftr1 expression was increased in mummichogs sampled 24 h after transfer from FW to SW; ano1.1a and -1.1b were upregulated in the gill and opercular epithelium following transfer from SW to hypersaline SW. Alternatively, the expression of ano1.1a, -1.1b, and cftr1 in the gill and opercular epithelium was markedly decreased after transfer from SW to FW. Given its role in attenuating ion secretion, we probed whether prolactin downregulates ano1-isoforms. In addition to attenuating cftr1 expression, a prolactin injection reduced branchial ano1.1a and -1.1b levels. Given how Ano1 mediates Cl- secretion by mammalian epithelial cells, the salinity- and prolactin-sensitive nature of ano1 expression reported here indicates that Ano1 may constitute a novel Cl--secretion pathway in ionocytes. This study encourages a wider evaluation of this putative Cl--secretion pathway and its regulation by hormones in teleost fishes.

7.
J Environ Manage ; 370: 122485, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278018

RESUMEN

Despite the rapid development of research on aquatic environment microbiota, limited attention has been paid to exploring the complex interactions between microbial communities and aquatic environments. Particularly, the mechanisms underlying fish diseases based on such dynamic interactions remain unknown. This study aimed to address the gap by conducting microbiome and co-occurrence network analyses on the typical freshwater aquaculture systems. High-throughput 16S rRNA gene sequencing results revealed significant differences in the microbiota between the disease and healthy groups. Notably, disease mortality varied consistently with the gradient of relative abundance of Proteobacteria (intestine, R2 = 0.46, p < 0.05) and Cyanobacteria (gill, R2 = 0.67, p < 0.01), indicating their potential use as diagnostic criteria. Furthermore, the elevated hepatosomatic index, NO3-N, COD and TC (sediment) were directly correlated with diseases (r > 0.54, p < 0.01). Mean concentrations of NO3-N, COD and TC were elevated by 78.87%, 25.63% and 44.2%, respectively, in ponds where diseases occurred. Quantitative analysis (qPCR) revealed that Aeromonas sobria infected hosts through a potential pathway of "sediment (4.4 × 105 copy number/g)-water (1.1 × 103 copy number/mL)-intestine (1.2 × 106 copy number/g)". Similarly, the potential route for Aeromonas veronii was sediment (4.9 × 106 copy number/g) to gill (5.1 × 105 copy number/g). Additionally, the complexity of microbial networks in the intestine, water, and sediment was significantly lower in the disease group, although no similar phenomenon was observed in the gill microbial network. In summary, these findings reveal that elevated concentrations of crucial environmental factors disrupt the linkages within microbiota, fostering the growth of opportunistic bacteria capable of colonizing fish gut or gills. This offers new insights into potential mechanisms by which environmental factors cause disease in fish.

8.
Aquat Toxicol ; 275: 107072, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222568

RESUMEN

6:2 Chlorinated polyfluorinated ether sulfonate, commonly known as F-53B, is widely used as a mist suppressant in various industries and is frequently detected in the environment. Despite its prevalent presence, the adverse effects of F-53B are not well understood and require future investigation. This study utilized zebrafish embryos and adults to examine the toxic effects of F-53B. Our findings revealed that F-53B impaired gill structure and increased erythrocyte numbers in adult zebrafish. Notably, F-53B demonstrated a higher sensitivity for inducing mortality (LC50 at 96 h) in adult zebrafish compared to embryos. Additionally, F-53B disrupted the expression of critical steroidogenic genes and hindered sex hormone production, which negatively affecting egg production. In conclusion, this study underscores the detrimental impact of F-53B on gill structure and reproductive toxicity in zebrafish, providing valuable insights into its overall toxicity.


Asunto(s)
Embrión no Mamífero , Branquias , Reproducción , Contaminantes Químicos del Agua , Pez Cebra , Animales , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Femenino , Masculino , Dosificación Letal Mediana
9.
Fish Shellfish Immunol ; 154: 109918, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307257

RESUMEN

Gill remodeling is an important strategy for fish to cope with hypoxia, and many of the teleost possess this ability, but the underlying mechanism is not well understood. To investigate the mechanism of hypoxia-induced gill remodeling, largemouth bass (Micropterus salmoides) exposed to hypoxia (dissolved oxygen level: 2.0 ± 0.2 mg L-1) for 7 days, followed by 7 days of reoxygenation. Hypoxia tests were also performed on primary gill cells from largemouth bass. We found that hypoxia-induced gill remodeling increased the respiratory surface area of the gills. This change in gill morphology was reversible and recovered after reoxygenation. A reduction in the number of mucous cells and rearrangement of mitochondria-rich cells (MRCs) were observed during gill remodeling. After 7 days of reoxygenation, the number of mucous cells and the position of the MRCs were restored. Hypoxia resulted in a 2.92-fold increase in the number of primary gill cells that underwent migration over a 12-h period. The mRNA levels of nine integrin subunits (α1, α2, α5, α7, α8, α10, αL, ß1 and ß2) were significantly up-regulated after 12 h of hypoxia in vivo, and the changes in the expression of these subunits were consistent with the HIF-1α trend. Immunohistochemistry showed that integrin ß1 protein levels were significantly increased and were abundantly expressed in the interlamellar cell mass after exposure to hypoxia. Taken together, the results of the present study demonstrated that changes in mucosal cells and MRCs play an important role in hypoxia-induced gill remodeling in largemouth bass and that these changes are regulated by integrins.

10.
Protist ; 175(6): 126068, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39341117

RESUMEN

The ability to distinguish between viable and non-viable protozoan parasites is central to improved human and animal health management. While conceptually simple, methods to differentiate cell viability in situ remain challenging. Amoebic gill disease, caused by Neoparamoeba perurans is a parasitic disease impacting Atlantic salmon aquaculture globally. Although commercial freshwater treatments alleviate AGD, viable amoebae remain on gills or in used treatment water. Existing PCR-based assays are able to quantify N. perurans abundance but cannot discriminate amoeba viability. We investigated the use of propidium monoazide (PMA) application, prior to real-time PCR, to distinguish between alive and dead cells. We demonstrate that 200 µM PMA can significantly reduce amplification from non-viable (isopropanol treated) cultured amoebae across at least three logs of cell concentrations. Using a serial dilution of viable and non-viable cells, we show that non-PMA PCR amplifies both viable and non-viable amoebae, while PMA exposure suppresses (but does not completely inhibit) amplification from non-viable amoebae. The effect of freshwater treatment on N. perurans viability was assessed using the PMA-PCR. Following PMA exposure, amplification from freshwater treated amoebae was reduced by approximately 94-97 %. Taken together this study demonstrates that PMA combined with traditional real-time PCR can estimate amoeba viability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA