Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biol Psychol ; 192: 108844, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992412

RESUMEN

Enhanced Sensorimotor Rhythm activity has been linked to increased automation in motor execution. Although existing research demonstrates the positive effects of SMR neurofeedback training on improving golf putting performance, its influence on golf long-game performance remains unexplored. This study sought to address this gap by involving seventeen professional female golfers (Age =24.63 ± 3.24 years, Handicap=2.06 ± 1.18) in a crossover-designed experiment incorporating both NFT and a no-training control condition. During the study, participants executed 40 150-yard swings while receiving continuous SMR neurofeedback. Pre- and post-testing included visual analog scales to assess psychological processes associated with SMR activities, including attention engagement, conscious motor control, and physical relaxation levels. The results revealed that a single session of NFT effectively heightened SMR power irrespective of T1 (p = .02) or T2 (p = .03), which was observed with improved swing accuracy compared to the control conditions, particularly in "To Pin" (p = .04, the absolute distance to the hole after the ball comes to a stop). Subjective assessments further indicated that SMR NFT contributed to a sense of ease and tranquility during motor preparation for the golf swing (attention engagement: p = .01, conscious motor control: p = .033, physical relaxation: p = .013), and which offered valuable insights into the potential mechanisms underlying the impact of SMR NFT on long-game performance. Additionally, in such practical applications professional athletes can utilize our single-session neurofeedback protocol to train efficiently and cost-effectively before competitions, thereby enhancing their opportunity to achieve a higher rank.

2.
Cureus ; 16(6): e63409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39070418

RESUMEN

Implantable medical devices, such as pacemakers, have significantly improved the quality of life for patients with cardiac conditions, allowing them to maintain active lifestyles. Nonetheless, these devices can present unique challenges when interacting with the wearer's physical activities, potentially leading to unforeseen complications. Here, we present a case of an 81-year-old male golfer, with a history of atrial fibrillation, congestive heart failure, and sick sinus syndrome, who experienced atrial lead noise from his pacemaker, exclusively triggered by his golf swing. This incident, which led to multiple interventions including lead extraction, reimplantation, and eventually a switch to a unipolar lead configuration, represents the first documented case of its kind. It underscores the intricate relationship between the biomechanical forces of certain sports and the functionality of implanted cardiac devices. Through detailed electrophysiology testing, this case demonstrates how specific movements inherent to the patient's golf swing could induce micro-damage to the pacemaker leads, causing noise and malfunction. The findings from this case emphasize the need for healthcare providers to perform sport-specific biomechanical evaluations and create tailored rehabilitation strategies that consider the unique physical demands placed on patients with implanted devices. This approach is important not only for diagnosing and managing similar cases but also for advancing our understanding of how to best support the active lifestyles of patients with implanted cardiac devices, ensuring their safety and longevity.

3.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400409

RESUMEN

The performance of the overhead squat may affect the golf swing mechanics associated with golf-related low back pain. This study investigates the difference in lumbar kinematics and joint loads during the golf downswing between golfers with different overhead squat abilities. Based on the performance of the overhead squat test, 21 golfers aged 18 to 30 years were divided into the highest-scoring group (HS, N = 10, 1.61 ± 0.05 cm, and 68.06 ± 13.67 kg) and lowest-scoring group (LS, N = 11, 1.68 ± 0.10 cm, and 75.00 ± 14.37 kg). For data collection, a motion analysis system, two force plates, and TrackMan were used. OpenSim 4.3 software was used to simulate the joint loads for each lumbar joint. An independent t-test was used for statistical analysis. Compared to golfers demonstrating limitations in the overhead squat test, golfers with better performance in the overhead squat test demonstrated significantly greater angular extension displacement on the sagittal plane, smaller lumbar extension angular velocity, and smaller L4-S1 joint shear force. Consequently, the overhead squat test is a useful index to reflect lumbar kinematics and joint loading patterns during the downswing and provides a good training guide reference for reducing the risk of a golf-related lower back injury.


Asunto(s)
Golf , Fenómenos Biomecánicos , Vértebras Lumbares , Postura , Fenómenos Mecánicos , Movimiento
4.
Front Sports Act Living ; 5: 1272038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033658

RESUMEN

In this study, we analyzed golfers' swing movement to extract differences in proficiency and individual characteristics using two-dimensional video data from a single camera. We conducted an experiment with 27 golfers who had a wide range of skill levels, using a 7-iron; we acquired video data with a camera on the sagittal plane. For data extraction, we used pose estimation (using HRNet) and object detection (using DeepLabCut) methods to extract human-joint and club-head data. We examined the relationship between proficiency and individual characteristics vis-à-vis forward tilt angle and club trajectory. The results showed that the stability and reproducibility of the forward tilt angle are characteristics of proficiency. Highly skilled golfers showed low variability and high reproducibility between trials in forward tilt angle. However, we found that club trajectory may not be a characteristic of proficiency but rather an individual characteristic. Club trajectory was divided roughly into clockwise rotation and counterclockwise rotation. Thus, the analysis based on video data from a single markerless camera enabled the extraction of the differences in proficiency and individual characteristics of golf swing. This suggests the usefulness of our system for simply evaluating golf swings and applying it to motor learning and coaching situations.

5.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896527

RESUMEN

Training devices to enhance golf swing technique are increasingly in demand. Golf swing biomechanics are typically assessed in a laboratory setting and not readily accessible. Inertial measurement units (IMUs) offer improved access as they are wearable, cost-effective, and user-friendly. This study investigates the accuracy of IMU-based golf swing kinematics of upper torso and pelvic rotation compared to lab-based 3D motion capture. Thirty-six male and female professional and amateur golfers participated in the study, nine in each sub-group. Golf swing rotational kinematics, including upper torso and pelvic rotation, pelvic rotational velocity, S-factor (shoulder obliquity), O-factor (pelvic obliquity), and X-factor were compared. Strong positive correlations between IMU and 3D motion capture were found for all parameters; Intraclass Correlations ranged from 0.91 (95% confidence interval [CI]: 0.89, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for upper torso rotation; Pearson coefficients ranged from 0.92 (95% CI: 0.92, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for upper torso rotation (p < 0.001 for all). Bland-Altman analysis demonstrated good agreement between the two methods; absolute mean differences ranged from 0.61 to 1.67 degrees. Results suggest that IMUs provide a practical and viable alternative for golf swing analysis, offering golfers accessible and wearable biomechanical feedback to enhance performance. Furthermore, integrating IMUs into golf coaching can advance swing analysis and personalized training protocols. In conclusion, IMUs show significant promise as cost-effective and practical devices for golf swing analysis, benefiting golfers across all skill levels and providing benchmarks for training.


Asunto(s)
Golf , Masculino , Humanos , Femenino , Fenómenos Biomecánicos , Torso , Pelvis , Hombro , Movimiento
6.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571482

RESUMEN

In golf swing analysis, high-speed cameras and Trackman devices are traditionally used to collect data about the club, ball, and putt. However, these tools are costly and often inaccessible to golfers. This research proposes an alternative solution, employing an affordable inertial motion capture system to record golf swing movements accurately. The focus is discerning the differences between motions producing straight and slice trajectories. Commonly, the opening motion of the body's left half and the head-up motion are associated with a slice trajectory. We employ the Hilbert-Huang transform (HHT) to examine these motions in detail to conduct a biomechanical analysis. The gathered data are then processed through HHT, calculating their instantaneous frequency and amplitude. The research found discernible differences between straight and slice trajectories in the golf swing's moment of impact within the instantaneous frequency domain. An average golfer, a single handicapper, and three beginner golfers were selected as the subjects in this study and analyzed using the proposed method, respectively. For the average golfer, the head and the left leg amplitudes of the swing motions increase at the moment of impact of the swings, resulting in the slice trajectory. These results indicate that an opening of the legs and head-up movements have been detected and extracted as non-linear frequency components, reviewing the biomechanical meaning in slice trajectory motion. For the single handicapper, the hip and left arm joints could be the target joints to detect the biomechanical motion that triggered the slice trajectory. For the beginners, since their golf swing forms were not finalized, the biomechanical motions regarding slice trajectory were different from each swing, indicating that beginner golfers need more practice to fix their golf swing form first. These results revealed that our proposed framework applied to different golf levels and could help golfers to improve their golf swing skills to achieve straight trajectories.


Asunto(s)
Golf , Humanos , Fenómenos Biomecánicos , Movimiento (Física) , Movimiento , Brazo , Movimientos de la Cabeza
7.
Technol Health Care ; 31(S1): 137-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038788

RESUMEN

BACKGROUND: Although the biomechanical features of the golf swing are extremely determined, multiple joint movements with limited pelvic and thoracic rotation movement can cause injury to the golfer and are linked with low back pain (LBP). We have developed the Pulley Master machine (PM), which is designed to offer active movement evaluation and monitoring as well as repetitive and task-specific training. OBJECTIVE: The primary goal of the present research was to analyze the effects of PM and Transfer of Electricity-Capacitive and Resistive (TECAR) therapy on the lumbar pain scale and thoracic and pelvic mobility in amateur golfers with LBP. METHODS: Twenty-one amateur golfers with LBP (six females, mean age = 23.43 ± 2.36 years) were randomly assigned to either PM or TECAR groups for five days per week over one week. Clinical outcome measurements included pelvic and thoracic mobility as well as a pain rating scale. Statistical analyses were presented using the analysis of variance (ANOVA), and the statistical significance level was set at P< 0.05. RESULTS: ANOVA showed that PM outperformed TECAR in terms of pelvic and thoracic mobility as well as a pain rating scale. CONCLUSION: The results provide novel and encouraging clinical evidence that PM improves pain control and mobility in amateur golfers with LBP.


Asunto(s)
Golf , Dolor de la Región Lumbar , Femenino , Humanos , Adulto Joven , Adulto , Dolor de la Región Lumbar/terapia , Golf/lesiones , Fenómenos Biomecánicos , Pelvis , Región Lumbosacra , Movimiento
8.
Technol Health Care ; 31(S1): 271-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066928

RESUMEN

BACKGROUND: Golf courses are designed with uneven terrain. These factors are especially important when facing (slope), players need to straighten the posture of each part of the body in order to complete the swing on an inclined surface such as flat ground. Amateur players may be more likely to change the movement patterns of their shots due to uneven terrain. Therefore, it may be necessary to clarify the shot characteristics of amateur players and provide reference materials for technical improvement. OBJECTIVE: The purpose of this study was to examine the effect of slope on amateur golfers' swing kinematics by analyzing the variation of time variables, body center of gravity (COG), and shot parameters of amateur golfers' swing at different ground slopes. METHODS: Six male amateur golfers participated in the experiment. The 7-iron was used for 5 swings each at three slopes: flat ground (FG, 0∘), ball below foot (BBF, +10∘), and foot below ball (FBB, -10∘). The OptiTrack-Motion capture system was used to collect kinematic data, and the three-dimensional motion data will be transmitted to Visual3D software for subsequent data analysis such as golf swing division and body COG changes. Shot parameters (carry, swing speed, ball speed, and smash factor) were recorded for each swing using the Caddie SC300 radar monitoring device. RESULTS: The results showed that there was no difference in the overall swing time and the time required for each interval at different slopes (p> 0.05) there is no significant difference in the change of the COG of the body in the forward and backward directions (p> 0.05). The three slopes of swing speed, ball speed, carry and smash factor were not significantly different (p> 0.05). CONCLUSION: The rhythm of the amateur golfer's swing was not affected by the slope, but the slope restricts the movement of the body's COG, which may affect the weight movement, and ultimately cause the performance parameters to not reach the level of the FG.


Asunto(s)
Golf , Movimiento , Humanos , Masculino , Fenómenos Biomecánicos , Postura , Pie , Atletas
9.
Sports (Basel) ; 11(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976946

RESUMEN

The aim of this study was to determine the differences in golf swing execution in terms of the parameters of the pelvis and thorax movement between the sexes in junior golfers and their relation to the golf club velocity. Elite female and male players (age: 15.4 ± 1.0 and 15.8 ± 1.7 years, respectively) performed 10 golf swings with a driver under laboratory conditions. Pelvis and thorax movement parameters and golf club velocities were measured using a three-dimensional motion capture system. Statistical parametric mapping analysis of pelvis-thorax coupling revealed a significant difference (p < 0.05) between boys and girls during backswing. Analysis of variance showed a significant effect of sex on the parameters of maximal pelvic rotation (F = 6.28, p = 0.02), X-factor (F = 5.41, p = 0.03), and golf club velocity (F = 31.98, p < 0.01). No significant relationship was found between pelvis and thorax movement parameters and golf club velocity in the girls. We found a significant negative relationship between the parameters of maximal thorax rotation and golf club velocity (r = -0.941, p < 0.01) and between X-Factor and golf club velocity (r = -0.847, p < 0.05) in the boys. We suggest that these negative relationships in males were caused by the influence of hormones during their maturation and biological development, where there is decreased flexibility (lower shoulders rotation and X-factor) and growth of muscle strength (higher club head velocity).

10.
Artículo en Inglés | MEDLINE | ID: mdl-36673931

RESUMEN

(1) Background: 'Slope' refers to the position faced by golfers on the course. Research on the recruitment strategies of thoracolumbar erector spinae during golf swings on different slopes may help us to understand some underlying mechanisms of lower back pain. (2) Purpose: The purpose of the present study is to assess electromyography (EMG) patterns of the erector spinae muscles (ES) and the kinematics of the trunk and swing parameters while performing golf swings on three different ground slopes: (1) no slope where the ball is level with the feet (BLF), (2) a slope where the ball is above the feet (BAF), and (3) a slope where the ball is below the feet (BBF). Furthermore, the present study evaluates the effect of slope on the kinematics of the trunk, the X-factor angle, and the hitting parameters. (3) Methods: Eight right-handed recreational male golfers completed five swings using a seven-iron for each ground slope. Surface electromyograms from the left and right sides of the ES thoracolumbar region (T8 and L3 on the spinous process side) were evaluated. Each golf swing was divided into five phases. Kinematics of the shoulder, trunk, and spine were evaluated, and the ball speed, swing speed, carry, smash factor, launch angle, and apex were measured using Caddie SC300. (3) Results: The muscle activity of the BAF and BBF slopes was significantly lower than that of the BLF slope during the early follow-through phase of the thoracic ES on the lead side (i.e., left side) and during the acceleration and early follow-through phases of the lumbar ES on the lead side. The lead and trail side (i.e., right side) lumbar ES were more active during acceleration than the thoracic ES. Additionally, the trends of the lead and trail sides of the thoracolumbar regions on the three slopes were found to be the same across the five phases. Trunk angle and X-factor angles had no significant differences in address, top of backswing, or ball impact. The maximum separation angles of the X-factor appeared in the early phase of the downswing for all the three slopes. Regarding smash factor and launch angle, there were no significant differences between the three slopes. The ball speed, swing speed, carry, and apex were higher on BLF than on BAF and BBF slopes. (4) Conclusion: The findings suggest that amateur golfers face different slopes with altered muscle recruitment strategies. Specifically, during the acceleration phase of the golf swing, the BAF and the BBF slopes, compared with the BLF slope, significantly underactivated the lead side thoracolumbar erector spinae muscles, thereby increasing the risk of back injury. Changes in muscle activity during critical periods may affect neuromuscular deficits in high-handicap players and may have implications for the understanding and development of golf-related lower back pain. In addition, the X-factor angle was not affected by the slope, however, it can be found that the hitting parameters on the BLF slope are more dominant than on the other slopes.


Asunto(s)
Golf , Dolor de la Región Lumbar , Masculino , Humanos , Golf/fisiología , Electromiografía , Vértebras Lumbares/fisiología , Músculos
11.
BMC Sports Sci Med Rehabil ; 14(1): 144, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883102

RESUMEN

BACKGROUND: Sixty million golfers around the world play golf. Golf injuries are most frequently located in the spine, elbow, wrist, hand and shoulder. Those injuries are often seen in golfers with more playing hours and suboptimal swing biomechanics, resulting in overuse injuries. Golfers who do not perform a warm-up or do not warm-up appropriately are more likely to report an injury than those who do. There are several ways to warm-up. It is unclear, which warm-up is most useful for a golfer to perform. Moreover, there is currently no evidence for the effectiveness of a warm-up program for golf injury prevention. We previously have developed the Golf Related Injury Prevention Program (GRIPP) intervention using the Knowledge Transfer Scheme (KTS). We aim to evaluate the effect of the GRIPP intervention on golf-related injuries. The hypothesis is that the GRIPP intervention program will reduce the number of golf-related injuries. METHODS AND DESIGN: The GRIPP study is a two-armed randomized controlled trial. Twenty-eight golf clubs with 11 golfers per club will be randomly allocated to the intervention or control group. The intervention group will perform the GRIPP intervention program, and the control group will perform their warm-up as usual. The GRIPP intervention is conducted with the Knowledge Transfer Scheme framework, which is a systematic process to develop an intervention. The intervention consists of 6 exercises with a maximum total of 10 min. The primary outcome is the overall prevalence (%) of golf injuries measured with the Oslo Sports Trauma Research Center (OSTRC-H) questions on health problems every fortnight. The secondary outcome measures will be exposure to golf and compliance to the intervention program. DISCUSSION: In other sports warm-up prevention programs are effective in reducing the risk of injuries. There are no randomized trials on golf injury prevention. Therefore, an individual unsupervised golf athlete intervention program is conducted which reflects the daily practice of predominantly unsupervised exposure of amateur golfers. TRIAL REGISTRATION: The trial is retrospectively (28 October 2021) registered at the Dutch Trial Register: NL9847 ( https://trialsearch.who.int ).

12.
Front Sports Act Living ; 4: 986281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619352

RESUMEN

Introduction: Golf swing generates power through coordinated rotations of the pelvis and upper torso, which are highly consistent among professionals. Currently, golf performance is graded on handicap, length-of-shot, and clubhead-speed-at-impact. No performance indices are grading the technique of pelvic and torso rotations. As an initial step toward developing a performance index, we collected kinematic metrics of swing rotational biomechanics and hypothesized that a set of these metrics could differentiate between amateur and pro players. The aim of this study was to develop a single-score index of rotational biomechanics based on metrics that are consistent among pros and could be derived in the future using inertial measurement units (IMU). Methods: Golf swing rotational biomechanics was analyzed using 3D kinematics on eleven professional (age 31.0 ± 5.9 years) and five amateur (age 28.4 ± 6.9 years) golfers. Nine kinematic metrics known to be consistent among professionals and could be obtained using IMUs were selected as candidate variables. Oversampling was used to account for dataset imbalances. All combinations, up to three metrics, were tested for suitability for factor analysis using Kaiser-Meyer-Olkin tests. Principal component analysis was performed, and the logarithm of Euclidean distance of principal components between golf swings and the average pro vector was used to classify pro vs. amateur golf swings employing logistic regression and leave-one-out cross-validation. The area under the receiver operating characteristic curve was used to determine the optimal set of kinematic metrics. Results: A single-score index calculated using peak pelvic rotational velocity pre-impact, pelvic rotational velocity at impact, and peak upper torso rotational velocity post-impact demonstrated strong predictive performance to differentiate pro (mean ± SD:100 ± 10) vs. amateur (mean ± SD:82 ± 4) golfers with an AUC of 0.97 and a standardized mean difference of 2.12. Discussion: In this initial analysis, an index derived from peak pelvic rotational velocity pre-impact, pelvic rotational velocity at impact, and peak upper torso rotational velocity post-impact demonstrated strong predictive performance to differentiate pro from amateur golfers. Swing Performance Index was developed using a limited sample size; future research is needed to confirm results. The Swing Performance Index aims to provide quantified feedback on swing technique to improve performance, expedite training, and prevent injuries.

13.
Sports Biomech ; : 1-22, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34280079

RESUMEN

The golf swing has been associated with mechanical injury risk factors at many joints. One swing, the Minimalist Golf Swing, was hypothesised to reduce lumbar spine, lead hip, and lead knee ranges of motion and peak net joint moments, while affecting swing performance, compared to golfers' existing swings. Existing and MGS swings of 15 golfers with handicaps ranging from +2 to -20 were compared. During MGS downswing, golfers had 18.3% less lumbar spine transverse plane ROM, 40.7 and 41.8% less lead hip sagittal and frontal plane ROM, and 39.2% less lead knee sagittal plane ROM. MGS reduced lead hip extensor, abductor, and internal rotator moments by 17.8, 19.7 and 43%, while lead knee extensor, abductor, adductor and external rotator moments were reduced by 24.1, 26.6, 37 and 68.8% respectively. With MGS, club approach was 2° shallower, path 4° more in-to-out and speed 2 m/s slower. MGS reduced certain joint ROM and moments that are linked to injury risk factors, while influencing club impact factors with varying effect. Most golf injuries are from overuse, so reduced loads per cycle with MGS may extend the healthy life of joints, and permit golfers to play injury-free for more years.

14.
Sports Biomech ; 20(7): 781-797, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31070109

RESUMEN

The aim of the study was to examine changes in centre of pressure (COP) movement, alignment and shot outcome during golf shots from flat, uphill, and downhill slopes by mid-handicap golfers. Twelve male golfers hit balls with a six-iron from the flat and 5° slopes while kinematics and kinetics of the swing were collected. A launch monitor measured performance outcomes. A shift in the COP was found during the backswing when playing on a slope, but disappeared during the downswing. Golfers attempted to align the body perpendicular to the slope at the start of the swing resulting in COP movement towards the lower foot, but were not able to maintain this throughout the swing, like low handicap golfers. There was no significant difference in stance width, but golfers placed the ball closer to the uphill foot on a slope. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. Golfers were more likely to hit shots to the left from an uphill slope and to the right for a downhill slope. No consistent compensatory adjustments in alignment at address were found, with differences in final ball position due to lateral spin.


Asunto(s)
Rendimiento Atlético/fisiología , Golf/fisiología , Movimiento/fisiología , Postura/fisiología , Soporte de Peso/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Cinética , Masculino , Persona de Mediana Edad , Equipo Deportivo , Propiedades de Superficie , Análisis y Desempeño de Tareas
15.
Artículo en Inglés | MEDLINE | ID: mdl-33066601

RESUMEN

Music has been reported as a positive intervention for improving psychophysiological conditions and exercise performance. However, the effects of music intervention on golf performance in association with psychophysiological responses have not been well examined in the literature. The purpose of the study was to investigate the acute effects of self-selected music intervention on golf swing and putting performance, heart rate (HR), HR variability (HRV), and anxiety. Twenty collegiate golfers voluntarily participated in this study (age = 20.2 ± 1.4 years, height = 171.7 ± 8.0 cm, body weight = 69.5 ± 14.6 kg, golf experience = 7.5 ± 2.1 years). A cross-over and within-subject design was used in this study. Participants performed a non-music trial (T1), pre-exercise music trial (T2), and simultaneous music trial (T3) in a randomized order with 48-72 h apart. The participants were attached to a HR monitor to record the HR and HRV during the measurement. The golf swing and putting performance was assessed by using the Golfzon golf simulator system. The state-trait anxiety inventory-state questionnaire (STAI-S) was used to evaluate anxiety state. All measurements were taken during baseline (phase one) and after resting or music intervention (phase two). Repeated measurement of analysis of variance (ANOVA) and Cohen's effect size (ES) were used for statistical analyses. The results show no significant differences in golf swing and putting performance (p > 0.05). However, significant decrease in STAI-S score was found in T2 (p = 0.047, ES = 0.32). A significant increase in the standard deviation of normal R-R interval (SDNN), low-frequency power spectrum (LF), standard deviation of along the line-of-identity (SD2) in T2 and T3 were observed (p < 0.05). In conclusion, a single pre-exercise or simultaneous self-selected music intervention contributes minor effects to golf performance in collegiate golfers. The positive benefits of self-selected music intervention on the psychological condition and cardia-related modulation while practicing golf is warranted.


Asunto(s)
Golf , Musicoterapia , Ansiedad de Desempeño , Estudios Cruzados , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Ansiedad de Desempeño/terapia , Adulto Joven
16.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630024

RESUMEN

The biomechanics of a golf swing have been of interest to golfers, instructors, and biomechanists. In addition to the complexity of the three-dimensional (3D) dynamics of multi-segments of body, the closed-chain body posture as a result of both hands holding a club together makes it difficult to fully analyze the 3D kinetics of a golf swing. To identify the hand-grip joint force and torque applied by each hand, we directly measured the 3D internal grip force of nine registered professional golfers using an instrumented grip. A six-axis force-torque sensor was connected to a custom-made axially separated grip, which was then connected to a driver shaft using a manufactured screw thread. Subjects participated in two sessions of data collection featuring five driver swings with both a regular and customized sensor-embedded grip, respectively. Internal grip force measurement and upper limb kinematics were used to calculate the joint force and torque of the nine-linkage closed-chain of the upper limb and club using 3D inverse dynamics. Direct measurement of internal grip forces revealed a threefold greater right-hand torque application compared to the left hand, and counterforce by both hands was also found. The joint force and torque of the left arm tended to precede that of the right arm, the majority of which had peaks around the impact and showed a larger magnitude than that of the left arm. Due to the practical challenge of measuring internal force, heuristic estimation methods based on club kinematics showed fair approximation. Our results suggest that measuring the internal forces of the closed-chain posture could identify redundant joint kinetics and further propose a heuristic approximation.


Asunto(s)
Golf/fisiología , Fuerza de la Mano , Mano/fisiología , Extremidad Superior/fisiología , Fenómenos Biomecánicos , Humanos , Cinética , Torque
17.
Intern Med ; 59(20): 2583-2586, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32581166

RESUMEN

A 51-year-old man developed a sudden headache during golf practice, followed by a high fever. He was admitted with suspected neutrophilic meningitis and was diagnosed with chemical meningitis caused by a dermoid cyst rupture based on the characteristic magnetic resonance imaging (MRI) findings, which showed multiple lipid droplets in his ventricle and cistern. His repetitive golf-swing motion was suggested to be the cause of his dermoid cyst rupture. On MRI, the lipid droplets appeared to have migrated by gravity because of the body position. Therefore, the body position should be considered to prevent obstructive hydrocephalus by lipid droplets after a dermoid cyst rupture.


Asunto(s)
Quiste Dermoide/complicaciones , Meningitis/etiología , Rotura Espontánea/complicaciones , Quiste Dermoide/diagnóstico por imagen , Golf , Humanos , Hidrocefalia/etiología , Imagen por Resonancia Magnética/efectos adversos , Masculino , Meningitis/diagnóstico por imagen , Persona de Mediana Edad
18.
J Sports Sci ; 37(6): 656-664, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30326790

RESUMEN

Previous research has highlighted the positive effect that different warm-up protocols have on golf performance (e.g. Sorbie et al., 2016; Tilley & Macfarlane, 2012) with the design of warm-ups and programmes targeting and improving golf performance through the activation and development of specific muscle groups. This study aimed to examine the acute effects of two warm-up protocols on golf drive performance in comparison to a control condition. Using a randomised counterbalanced design over three testing sessions, twenty-three highly skilled golfers completed the control, dynamic and resistance-band warm-up conditions. Following each condition, a GC2 launch monitor was used to record ball velocity and other launch parameters of ten shots hit with the participants' own driver. A repeated-measures ANOVA found significant increases in ball velocity (ηp2 = .217) between the control and both the dynamic and resistance-band warm-up conditions but no difference between these latter two, and a reduction in launch angle between control and dynamic conditions. The use of either a dynamic stretching or resistance-band warm-up can have acute benefits on ball velocity but golfers should liaise with a PGA Professional golf coach to effectively integrate this into their golf driving performance.


Asunto(s)
Rendimiento Atlético/fisiología , Golf/fisiología , Ejercicio de Calentamiento , Adolescente , Femenino , Humanos , Masculino , Adulto Joven
19.
Ann Rehabil Med ; 42(5): 713-721, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30404420

RESUMEN

OBJECTIVE: To evaluate if shoulder and pelvic angular velocities differ at impact or peak magnitude between professional and amateur golfers. Golf swing rotational biomechanics are a key determinant of power generation, driving distance, and injury prevention. We hypothesize that shoulder and pelvic angular velocities would be highly consistent in professionals. METHODS: Rotational velocities of the upper-torso and pelvis throughout the golf swing and in relation to phases of the golf swing were examined in 11 professionals and compared to 5 amateurs using three-dimensional motion analysis. RESULTS: Peak rotational velocities of professionals were highly consistent, demonstrating low variability (coefficient of variation [COV]), particularly upper-torso rotational velocity (COV=0.086) and pelvic rotational velocity (COV=0.079) during down swing. Peak upper-torso rotational velocity and peak X-prime, the relative rotational velocity of uppertorso versus pelvis, occurred after impact in follow-through, were reduced in amateurs compared to professionals (p=0.005 and p=0.005, respectively) and differentiated professionals from most (4/5) amateurs. In contrast, peak pelvic rotational velocity occurred in down swing. Pelvic velocity at impact was reduced in amateurs compared to professionals (p=0.019) and differentiated professionals from most (4/5) amateurs. CONCLUSION: Golf swing rotational velocity of professionals was consistent in pattern and magnitude, offering benchmarks for amateurs. Understanding golf swing rotational biomechanics can guide swing modifications to help optimize performance and prevent injury.

20.
J Appl Biomech ; 34(5): 361-368, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29651897

RESUMEN

The aim of the study was to examine changes in weight transfer, alignment, and shot outcome during golf shots from flat, uphill, and downhill slopes. Twelve elite male golfers hit 30 shots with a 6-iron from a computer-assisted rehabilitation environment used to create 5° slopes while collecting 3-dimensional kinematics and kinetics of the swing. A launch monitor measured performance outcomes. A shift in the center of pressure was found throughout the swing when performed on a slope, with the mean position moving approximately 9% closer to the lower foot. The golfers attempted to remain perpendicular to the slope, resulting in weight transfer toward the lower foot. The golfers adopted a wider stance in the sloped conditions and moved the ball toward the higher foot at address. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. As the coaching literature predicted, golfers were more likely to hit shots to the left from an uphill slope and to the right from a downhill slope. No consistent compensatory adjustments in alignment at address or azimuth were found, with the change in final shot dispersion resulting from the lateral spin of the ball.


Asunto(s)
Rendimiento Atlético/fisiología , Peso Corporal/fisiología , Pie/fisiología , Golf/fisiología , Postura/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Presión , Equipo Deportivo , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA