Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Exp Dermatol ; 33(9): e15172, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219105

RESUMEN

The pemphigoid disease epidermolysis bullosa acquisita (EBA) is an autoimmune blistering skin disease characterized by autoantibodies against type VII collagen (COL7), immune cell infiltrates at the dermal-epidermal junction and subepidermal blistering. Proteases, particularly granzyme B (GzmB), have been established as therapeutic targets for the treatment of EBA and other pemphigoid diseases. We investigated the impact of the novel GzmB inhibitor SNT-6935 on anti-COL7 IgG-induced subepidermal blistering in a well-established EBA ex vivo model. Our findings demonstrate that pharmacological targeting of GzmB with its selective inhibitor SNT-6935 significantly reduced autoantibody-induced dermal-epidermal separation in human skin cryosections. Interestingly, treatment of skin cryosections with recombinant human GzmB alone did not cause dermal-epidermal separation, suggesting that additional mechanisms alongside GzmB are required for tissue damage in EBA. In conclusion, our study highlights the significant contribution of GzmB to the pathogenesis of EBA and supports the notion of GzmB as a therapeutic target in EBA and other pemphigoid diseases.


Asunto(s)
Autoanticuerpos , Colágeno Tipo VII , Epidermis , Epidermólisis Ampollosa Adquirida , Granzimas , Epidermólisis Ampollosa Adquirida/tratamiento farmacológico , Epidermólisis Ampollosa Adquirida/inmunología , Humanos , Granzimas/metabolismo , Granzimas/antagonistas & inhibidores , Colágeno Tipo VII/inmunología , Epidermis/patología , Dermis/patología , Piel/patología
2.
Fish Shellfish Immunol ; 153: 109865, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214265

RESUMEN

Secreted by natural killer cells and cytotoxic T lymphocytes, Granzyme B is involved in regulating the adaptive immune response in vertebrates and plays a pivotal role in resisting virus invasion and removing pathogens. Although it had been extensively studied in mammals, the involvement of Granzyme B in adaptive immune response of early vertebrates remained elusive. In this study, we investigated the Granzyme B in Oreochromis niloticus (OnGrB), found that its function domain was conserved. Additionally, OnGrB was widely expressed in various tissues and could respond to T-cell activation in vitro at the transcriptional level. Furthermore, we prepared the recombinant OnGrB (rOnGrB) as an immunogen to develop a mouse anti-OnGrB monoclonal antibody (mAb). Using this anti-OnGrB mAb as a tool, we explored the expression of OnGrB in the adaptive immune response of tilapia. Our findings revealed that T cell was a significant source of OnGrB production, the expression of OnGrB at the protein level and the proportion of OnGrB + T cells increased after both T cell activation in vitro and infection with Edwardsiella piscicida in vivo. More importantly, our findings also preliminarily illuminated that p65 could regulate the transcriptional activity of OnGrB. These results indicated that OnGrB was involved in the adaptive immunity of tilapia and played a critical role in T cell function in teleost. Our study provided theoretical support and new perspectives for understanding adaptive immunity in teleost.


Asunto(s)
Cíclidos , Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Proteínas de Peces , Granzimas , Animales , Inmunidad Adaptativa , Secuencia de Aminoácidos , Cíclidos/inmunología , Cíclidos/genética , Edwardsiella/inmunología , Edwardsiella/fisiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica/inmunología , Granzimas/genética , Granzimas/inmunología , Granzimas/metabolismo , Filogenia , Alineación de Secuencia/veterinaria , Linfocitos T/inmunología
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125711

RESUMEN

Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF.


Asunto(s)
Catepsina C , Coinfección , Granzimas , Infecciones por VIH , Macrófagos , Mycobacterium tuberculosis , Humanos , Granzimas/metabolismo , Granzimas/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/virología , Coinfección/microbiología , Catepsina C/metabolismo , Catepsina C/genética , Cistatinas/metabolismo , Cistatinas/genética , Tuberculosis/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , VIH-1/fisiología , Biomarcadores de Tumor
4.
J Cell Mol Med ; 28(16): e70016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175122

RESUMEN

Natural killer (NK) cell therapy, a developing approach in cancer immunotherapy, involves isolating NK cells from peripheral blood. However, due to their limited number and activity, it is essential to significantly expand these primary NK cells and enhance their cytotoxicity. In this study, we investigated how Raddeanin A potentiate NK activity using KHYG-1 cells. The results indicated that Raddeanin A increased the expression levels of cytolytic molecules such as perforin, granzymes A and granzymes B, granulysin and FasL in KHYG-1 cells. Raddeanin A treatment increased CREB phosphorylation, p65 phosphorylation, NFAT1 and acetyl-histone H3 expression. Raddeanin A elevated caspase 3 and PARP cleavage, increased t-Bid expression, promoting apoptosis in K562 cells. Furthermore, it reduced the expression of HMGB2, SET and Ape1, impairing the DNA repair process and causing K562 cells to die caspase-independently. Additionally, Raddeanin A increased ERK, p38 and JNK phosphorylation at the molecular level, which increased granzyme B production in KHYG-1 cells. Raddeanin A treatment increased Ras, Raf phosphorylation, MEK phosphorylation, NKG2D, NKp44 and NKp30 expression in KHYG-1 cells. Collectively, our data indicate that Raddeanin A enhances the cytotoxic activity of NK cells against different cancer cells.


Asunto(s)
Apoptosis , Células Asesinas Naturales , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas ras/metabolismo , Citotoxicidad Inmunológica , Transducción de Señal , Quinasas raf/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Reparación del ADN , Granzimas/metabolismo
5.
Front Immunol ; 15: 1421175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091492

RESUMEN

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Asunto(s)
Fibrosis , Granzimas , Degeneración Macular , Humanos , Animales , Degeneración Macular/patología , Degeneración Macular/metabolismo , Degeneración Macular/etiología , Granzimas/metabolismo , Retina/patología , Retina/metabolismo , Retina/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo
6.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201366

RESUMEN

Pterygium is often associated with chronic ultraviolet (UV) radiation exposure and characterized by the overgrowth of conjunctiva and extracellular matrix (ECM) remodeling. Notably, several studies in the skin have demonstrated that chronic UV radiation can upregulate Granzyme B (GrB) expression and increase ECM degradation. The aim of this study was to compare GrB expression between pterygium and healthy controls and to further link this GrB expression to mast cells. Post-mortem pterygium tissues and conjunctival tissues from age-matched controls were used to assess GrB expression via immunofluorescence and microscopy. We found a significantly higher density of GrB+ cells from pterygium specimens compared to healthy controls. Furthermore, many of the GrB+ cells in pterygium specimens co-expressed tryptase, a mast cell marker. These findings suggest a role for conjunctival mast cell-secreted GrB in the pathogenesis of pterygium and highlight GrB as a possible therapeutic target in delaying or halting pterygium progression.


Asunto(s)
Conjuntiva , Granzimas , Pterigion , Humanos , Pterigion/metabolismo , Pterigion/patología , Granzimas/metabolismo , Conjuntiva/metabolismo , Conjuntiva/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Mastocitos/metabolismo , Adulto , Estudios de Casos y Controles , Anciano de 80 o más Años , Triptasas/metabolismo
7.
J Inflamm Res ; 17: 4505-4523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006494

RESUMEN

Background: The involvement of cytotoxic CD4+ T cells (CD4+ CTLs) and their potential role in dictating the response to immune checkpoint inhibitors (ICIs) in patients with metastatic renal cell carcinoma (mRCC) remains an unexplored area of research. Methods: Utilizing single-cell RNA sequencing, we analyzed the immunophenotype and expression patterns of CD4+ T lymphocyte subtypes in mRCC patients, followed by preliminary validation via multi-immunofluorescent staining. In addition, we obtained a comprehensive immunotherapy dataset encompassing single-cell RNA sequencing datasets and bulk RNA-seq cohorts from the European Genome-Phenome Archive and ArrayExpress database. Utilizing the CIBERSORTx deconvolution algorithms, we derived a signature score for CD4+ CTLs from the bulk-RNA-seq datasets of the CheckMate 009/025 clinical trials. Results: Single-cell analysis of CD4+ T lymphocytes in mRCC reveals several cancer-specific states, including diverse phenotypes of regulatory T cells. Remarkably, we observe that CD4+ CTLs cells constitute a substantial proportion of all CD4+ T lymphocyte sub-clusters in mRCC patients, highlighting their potential significance in the disease. Furthermore, within mRCC patients, we identify two distinct cytotoxic states of CD4+ T cells: CD4+GZMK+ T cells, which exhibit a weaker cytotoxic potential, and CD4+GZMB+ T cells, which demonstrate robust cytotoxic activity. Both regulatory T cells and CD4+ CTLs originate from proliferating CD4+ T cells within mRCC tissues. Intriguingly, our trajectory analysis indicates that the weakly cytotoxic CD4+GZMK+ T cells differentiate from their more cytotoxic CD4+GZMB+ counterparts. In comparing patients with lower CD4+ CTLs levels to those with higher CD4+ CTLs abundance in the CheckMate 009 and 25 immunotherapy cohorts, the latter group exhibited significantly improved OS and PFS probability. Conclusion: Our study underscores the pivotal role that intratumoral CD4+ CTLs may play in bolstering anti-tumor immunity, suggesting their potential as a promising biomarker for predicting response to ICIs in patients with mRCC.

8.
ACS Nano ; 18(29): 18910-18921, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001856

RESUMEN

Granzyme B is an immune-related biomarker that closely correlates with cytotoxic T lymphocytes (CTLs), and hence detecting the expression level of granzyme B can provide a dependable scheme for clinical immune response assessment. In this study, two positron emission tomography (PET) probes [18F]SF-M-14 and [18F]SF-H-14 targeting granzyme B are designed based on the intramolecular cyclization scaffold SF. [18F]SF-M-14 and [18F]SF-H-14 can respond to granzyme B and glutathione (GSH) to conduct intramolecular cyclization and self-assemble into nanoaggregates to enhance the retention of probe at the target site. Both probes are prepared with high radiochemical purity (>98%) and high stability in PBS and mouse serum. In 4T1 cells cocultured with T lymphocytes, [18F]SF-M-14 and [18F]SF-H-14 reach the maximum uptake of 6.71 ± 0.29 and 3.47 ± 0.09% ID/mg at 0.5 h, respectively, but they remain below 1.95 ± 0.22 and 1.47 ± 0.21% ID/mg in 4T1 cells without coculture of T lymphocytes. In vivo PET imaging shows that the tumor uptake in 4T1-tumor-bearing mice after immunotherapy is significantly higher (3.5 times) than that in the untreated group. The maximum tumor uptake of [18F]SF-M-14 and [18F]SF-H-14 in the mice treated with BEC was 4.08 ± 0.16 and 3.43 ± 0.12% ID/g, respectively, while that in the untreated mice was 1.04 ± 0.79 and 1.41 ± 0.11% ID/g, respectively. These results indicate that both probes have great potential in the early evaluation of clinical immunotherapy efficacy.


Asunto(s)
Granzimas , Inmunoterapia , Tomografía de Emisión de Positrones , Animales , Granzimas/metabolismo , Ratones , Femenino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Radiofármacos/química , Radioisótopos de Flúor/química , Humanos
9.
Front Immunol ; 15: 1422113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966643

RESUMEN

Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.


Asunto(s)
Serpinas , Humanos , Serpinas/metabolismo , Serpinas/uso terapéutico , Animales , Neoplasias/inmunología , Neoplasias/terapia , Granzimas/metabolismo , Transducción de Señal
10.
Case Rep Dermatol ; 16(1): 116-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015400

RESUMEN

Introduction: Anti-PD-1 immunotherapies enhance T-cell responses against tumor cells by blocking the interaction between PD-1 and its ligand, PD-L1. While these therapies offer significant benefits in treating various malignancies, they can also lead to several immune-related adverse events (irAEs), most notably manifesting in the skin. Lichenoid reactions, eczema, and vitiligo are the three most prevalent forms of cutaneous irAE. Case Presentation: Here, we report a rare case of a pityriasis lichenoides et varioliformis acuta (PLEVA) that developed during pembrolizumab treatment for invasive bladder cancer. A 53-year-old man, receiving pembrolizumab for invasive bladder cancer, developed erythematous papules on his legs after his 11th infusion. The skin lesions gradually spread to his entire trunk and extremities. A punch biopsy revealed several apoptotic keratinocytes and spongiosis, along with perivascular and lichenoid lymphocytic infiltration with vacuolar alteration. Immunohistochemistry showed infiltration of CD4+ and CD8+ T cells in both the epidermis and dermis. Granzyme B-positive inflammatory cells were also slightly present. From these results, he was diagnosed with PLEVA, which might be classified as a lichenoid eruption, especially based on the histological findings. Conclusion: We hypothesize that the anti-PD-1 antibody might lead to epidermal necrosis by amplifying the expression of cytolytic molecules such as granzyme B in CD8+ T cells.

11.
J Leukoc Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833584

RESUMEN

As one molecule related to cytotoxicity, surface expression of C-X3-C motif receptor 1 (CX3CR1) was highly correlated with intracellular granzyme B (GZMB) in NK and cytolytic T cells. However, the expression of CX3CR1 and GZMB in B cells has not been clarified, and their clinical significance in systemic lupus erythematosus (SLE) remains unclear. This study aimed to clarify the changes and clinical significance of peripheral blood B cells expressing GZMB and/or CX3CR1 in SLE. Peripheral blood was collected from 39 SLE patients and 48 healthy controls. We found that GZMB and CX3CR1 expression varied in different B-cell subsets, with plasmablasts possessing the highest positive percentages, consistent with bioinformatics prediction. GZMB+ and CX3CR1+ percentages in circulating B cells and plasmablasts were increased in SLE patients. CX3CR1 was upregulated on B cells after in vitro stimulation. Notch intracellular domain (NICD) expression was significantly decreased in plasmablasts of SLE patients and CX3CR1 in plasmablasts was downregulated with the addition of JAG1. In conclusion, GZMB and CX3CR1 were increased in B cells and in plasmablasts of SLE patients and CX3CR1 was negatively regulated by Notch signal in plasmablasts, which may be involved in SLE pathogenesis.

12.
Front Immunol ; 15: 1392535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846935

RESUMEN

The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.


Asunto(s)
Granzimas , Células Asesinas Naturales , Perforina , Linfocitos T Citotóxicos , Granzimas/metabolismo , Humanos , Perforina/metabolismo , Animales , Linfocitos T Citotóxicos/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Neoplasias/inmunología , Neoplasias/terapia
13.
J Leukoc Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920355

RESUMEN

Members of the vanin gene family include VNN1, VNN2 and VNN3 in humans. Although the functions of vanins have been widely examined in myeloid cells, their expression and functions have not been clarified in T lymphocytes. This study aimed to elucidate the significance of Vanin-2 (VNN2) on human peripheral blood T lymphocytes and study its expression in systemic lupus erythematosus (SLE). The differential expression of Vanins was analysed by bioinformatics. VNN2 expressions in peripheral blood T cell subsets were analysed by single-cell RNA sequencing data and flow cytometry. Changes of VNN2 expression before and after T cell activation were further clarified by western blot. The function of VNN2+ cells was studied by granzyme B and perforin detection. Changes in VNN2+ proportions in T cell subsets of SLE patients were further analysed. In the present study, only VNN2 among vanins showed distinguishable expression in T cells. VNN2+ percentages were higher in CD8+ T cells than in CD4+ T cells. VNN2+ T cells were with a higher memory T cell composition. VNN2 expression was significantly increased after T cell stimulation. VNN2+ T cells had higher levels of granzyme B and perforin secretion than VNN2- T cells. Clinically, VNN2+ percentages in T cells of SLE patients were upregulated. Together, these data suggested that VNN2 is expressed in peripheral blood T cells characterized more granzyme B and perforin secretion, and increased VNN2+ T cells in SLE patients could reflect altered T cell functions in vivo.

14.
Biomedicines ; 12(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927465

RESUMEN

Peripheral blood mononuclear cells contain secretory granules with Perforin and Granzyme B for defense against pathogens. The objective of the present study was to compare the effects of immunosuppressive induction therapies on Perforin and Granzyme B transcripts in kidney transplant recipients. Transcripts were determined in 408 incident kidney transplant recipients eight days posttransplant using quantitative real-time PCR. Compared to 90 healthy subjects, the median Perforin transcripts were lower in kidney transplant recipients with blood-group ABO-incompatible donors (N = 52), compatible living donors (N = 130), and deceased donors (N = 226) (25.7%; IQR, 6.5% to 46.0%; 31.5%; IQR, 10.9% to 57.7%; and 35.6%; IQR, 20.6% to 60.2%; respectively; p = 0.015 by the Kruskal-Wallis test). Kidney transplant recipients who were treated with thymoglobulin (N = 64) had significantly lower Perforin as well as Granzyme B compared to all other induction therapies (N = 344) (each p < 0.001). Receiver operator characteristics analysis showed that both Perforin (area under curve, 0.919) and Granzyme B (area under curve, 0.915) indicated thyroglobulin-containing induction therapies. Regression analysis showed that both reduction in plasma creatinine and human leukocyte antigen mismatches were positively associated with elevated Perforin/Granzyme B transcript ratio posttransplant. We conclude clinical parameters and therapies affect Perforin and Granzyme B transcripts posttransplant.

15.
Oral Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937944

RESUMEN

OBJECTIVE: Oral lichen planus (OLP) is a chronic inflammatory disease characterized by a dense T-cell infiltration and the degeneration of basal keratinocytes. The potential functions of mucosal associated invariant T (MAIT) cells in OLP have been analyzed in our previous study. Keratinocytes under proinflammatory conditions have been demonstrated to activate T cells. This study was aimed to investigate how keratinocytes stimulate MAIT cells in OLP, and to explore the role of activated MAIT cells on keratinocytes. METHODS AND RESULTS: Increased MAIT cells and higher activation marker CD69 were detected in OLP lesions by flow cytometry. The enhanced expression of MHC class I-like molecule (MR1) required for MAIT cell activation in the epithelial layer of OLP lesions was determined by immunohistochemistry. Keratinocytes treated by 5-A-RU prodrug and lipopolysaccharide, respectively, exhibited higher expression of MR1 and secretion of IL-18. In direct coculture systems consisting of keratinocytes and peripheral blood mononuclear cells, both 5-A-RU prodrug-pretreated keratinocytes and lipopolysaccharide-pretreated keratinocytes activated MAIT cells to secrete granzyme B, contributing to elevated keratinocyte apoptosis. CONCLUSIONS: Keratinocytes were capable to activate MAIT cells via MR1 and cytokines in OLP, and granzyme B produced by activated MAIT cells intensified keratinocyte apoptosis, engaging in the pathogenesis of OLP.

16.
J Comp Pathol ; 212: 20-26, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943798

RESUMEN

Lymphoma is the most common tumour of domestic cats, developing most frequently in the small intestine. Feline small intestinal lymphoma predominantly demonstrates a T-cell immunophenotype identified by standard immunopositivity for T cells with CD3 or immunopositivity for B cells with CD20. In contrast, a wide spectrum of immunohistochemical antibodies are applied in humans to diagnose the various specific lymphoma subtypes according to the WHO classification. Our aim was to augment our knowledge of immunophenotypes in feline non-B-cell lymphomas forming macroscopic masses in the intestinal tract. We evaluated the combined immunohistochemistry and flow cytometry findings from 15 cases. Neoplastic lymphoid cells were immunopositive for CD3 in 93% (14/15), granzyme B in 87% (13/15), CD5 in 20% (3/15), CD8 in 13% (2/15), CD4 in 7% (1/15) and CD56 in 7% (1/15) of cases. Cytotoxic granules indicating a cytotoxic origin of the neoplastic cells were identified by histopathology only in 13% (2/15) and by cytology in 47% (7/15) of the cases. Without immunohistochemical labelling of the cytotoxic protein granzyme B, the cytotoxic status would have been missed in 46% (6/13) of the cytological and in 85% (11/13) of the histopathological slides. These findings suggest that more complex immunophenotyping may advance our understanding and help prognosticate small intestinal T-cell lymphoma in cats.


Asunto(s)
Enfermedades de los Gatos , Inmunofenotipificación , Neoplasias Intestinales , Gatos , Animales , Inmunofenotipificación/veterinaria , Enfermedades de los Gatos/patología , Enfermedades de los Gatos/inmunología , Neoplasias Intestinales/veterinaria , Neoplasias Intestinales/patología , Inmunohistoquímica , Masculino , Femenino
17.
Biochem Genet ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801462

RESUMEN

Granzyme B (GZMB), a critical member of the Gr gene family, is known to play an essential role in diverse physiological and pathological processes such as inflammation, acute and chronic inflammatory diseases, and cancer progression. In this study, we delve deeper into the role of GZMB within the context of gastric cancer (GC) to examine its expression patterns and functional implications. To accomplish this, we applied a combination of quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry techniques. These methodologies allowed us to accurately gauge GZMB expression levels in GC tissues and investigate their correlation with various clinical-pathological variables. Our secondary focus was to discern the regulatory influence of GZMB on GC cell biology. We used an array of assays including cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine, and migration assays. The effect of GZMB on gastric cancer progression was further validated through a subcutaneous xenograft mouse model. Our findings underscored that GZMB mRNA and protein levels were upregulated in GC tissues, a feature that showed a significant correlation with GC staging. We also discovered that a decrease in GZMB expression via knockdown experiments suppressed the proliferation and migration capabilities of GC cells. This effect was manifested through diminished expression levels of epithelial-mesenchymal transition (EMT) markers. In stark contrast, the overexpression of GZMB through plasmid transfection appeared to enhance the proliferation and migration abilities of GC cells. This was coupled with an upregulation in EMT expression. Our study concludes by emphasizing that GZMB promotes the growth, migration, and EMT processes in gastric cancer. In vitro, cell-based experiments and in vivo xenograft mouse models confirm this. Our findings provide a more comprehensive understanding of GZMB's role in gastric cancer pathogenesis, potentially opening doors for novel therapeutic strategies targeting this molecular pathway.

18.
Yakugaku Zasshi ; 144(5): 475-481, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38692920

RESUMEN

Zinc is one of the essential trace elements, and is involved in various functions in the body. Zinc deficiency is known to cause immune abnormalities, but the mechanism is not fully understood. Therefore, we focused our research on tumor immunity to elucidate the effect of zinc on colorectal cancer and its mechanisms. Mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) to develop colorectal cancer, then the relationship between zinc content in the diet and the number and area of tumors in the colon was observed. The number of tumors in the colon was significantly higher in the no-zinc-added diet group compared to the normal zinc intake group, and about half the number in the high-zinc-intake group compared to the normal-zinc-intake group. In T-cell-deficient mice, the number of tumors in the high-zinc-intake group was similar to that in the normal-zinc-intake group, suggesting that the inhibitory effect of zinc was dependent on T cells. Furthermore, we found that the amount of granzyme B transcript released by cytotoxic T cells upon antigen stimulation was significantly increased by the addition of zinc. We also showed that granzyme B transcriptional activation by zinc addition was dependent on calcineurin activity. Collectively, we have shown that zinc exerts its tumor-suppressive effect by acting on cytotoxic T cells, the center of cellular immunity, and that it increases the transcription of granzyme B, one of the key molecules involved in tumor immunity. In this symposium, we would like to introduce our latest data on the relationship between zinc and tumor immunity.


Asunto(s)
Neoplasias Colorrectales , Inmunidad Celular , Zinc , Animales , Humanos , Ratones , Azoximetano , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/prevención & control , Modelos Animales de Enfermedad , Granzimas/metabolismo , Linfocitos T Citotóxicos/inmunología
19.
Sci Rep ; 14(1): 12188, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806640

RESUMEN

Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Granzimas , Interferón gamma , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/sangre , Masculino , Femenino , Persona de Mediana Edad , Interferón gamma/metabolismo , Anciano , Granzimas/metabolismo , Perforina/metabolismo , Antígeno CD56/metabolismo , Citometría de Flujo , Adulto
20.
J Nucl Med ; 65(7): 1137-1143, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754959

RESUMEN

Developing a noninvasive imaging method to detect immune system activation with a high temporal resolution is key to improving inflammatory bowel disease (IBD) management. In this study, granzyme B (GZMB), typically released from cytotoxic T and natural killer cells, was targeted using PET with 68Ga-NOTA-GZP (where GZP is ß-Ala-Gly-Gly-Ile-Glu-Phe-Asp-CHO) to detect early intestinal inflammation in murine models of colitis. Methods: Bioinformatic analysis was used to assess the potential of GZMB as a biomarker for detecting IBD and predicting response to treatment. Human active and quiescent Crohn disease and ulcerative colitis tissues were stained for GZMB. We used IL-10-/- mice treated with dextran sulfate sodium (DSS) as an IBD model, wild-type C57BL/6J mice as a control, and anti-tumor necrosis factor as therapy. We used a murine GZMB-binding peptide conjugated to a NOTA chelator (NOTA-GZP) labeled with 68Ga as the PET tracer. PET imaging was conducted at 1, 3, and 4 wk after colitis induction to evaluate temporal changes. Results: Bioinformatic analysis showed that GZMB gene expression is significantly upregulated in human ulcerative colitis and Crohn disease compared with the noninflamed bowel by 2.98-fold and 1.92-fold, respectively; its expression is lower by 2.16-fold in treatment responders than in nonresponders. Immunofluorescence staining of human tissues demonstrated a significantly higher GZMB in patients with active than with quiescent IBD (P = 0.032).68Ga-NOTA-GZP PET imaging showed significantly increased bowel uptake in IL-10-/- mice with DSS-induced colitis compared with vehicle-treated IL-10-/- mice (SUVmean, 0.75 vs. 0.24; P < 0.001) and both vehicle- and DSS-treated wild-type mice (SUVmean, 0.26 and 0.37; P < 0.001). In the IL-10-/- DSS-induced colitis model, the bowel PET probe uptake decreased in response to treatment with tumor necrosis factor-α (SUVmean, 0.32; P < 0.001). There was a 4-fold increase in colonic uptake of 68Ga-NOTA-GZP in the colitis model compared with the control 1 wk after colitis induction. The uptake gradually decreased to approximately 2-fold by 4 wk after IBD induction; however, the inflamed bowel uptake remained significantly higher than control at all time points (week 4 SUVmean, 0.23 vs. 0.08; P = 0.001). Conclusion: GZMB is a promising biomarker to detect active IBD and predict response to treatment. This study provides compelling evidence to translate GZMB PET for imaging IBD activity in clinical settings.


Asunto(s)
Granzimas , Enfermedades Inflamatorias del Intestino , Tomografía de Emisión de Positrones , Animales , Ratones , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Humanos , Granzimas/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA