Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Manage ; 366: 121829, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018853

RESUMEN

Rain barrels/cisterns are a type of green infrastructure (GI) practice that can help restore urban hydrology. Roof runoff captured and stored by rain barrels/cisterns can serve as a valuable resource for landscape irrigation, which would reduce municipal water usage and decrease runoff that other stormwater infrastructures need to treat. The expected benefits of rainwater harvesting and reuse with rain barrels/cisterns are comprehensive but neither systematically investigated nor well documented. A comprehensive tool is needed to help stakeholders develop efficient strategies to harvest rainwater for landscape irrigation with rain barrels/cisterns. This study further improved the Soil and Water Assessment Tool (SWAT) in simulating urban drainage networks by coupling the Storm Water Management Model (SWMM)'s closed pipe drainage network (CPDN) simulation methods with the SWAT model that was previously improved for simulating the impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns. The newly improved SWAT or SWAT-CPDN was applied to simulate the urban hydrology of the Brentwood watershed (Austin, TX) and evaluate the long-term effects of rainwater harvesting for landscape irrigation with rain barrels/cisterns at the field and watershed scales. The results indicated that the SWAT-CPDN could improve the prediction accuracy of urban hydrology with good performance in simulating discharges (15 min, daily, and monthly), evapotranspiration (monthly), and leaf area index (monthly). The impacts of different scenarios of rainwater harvesting and reuse strategies (rain barrel/cistern sizes, percentages of suitable areas with rain barrels/cisterns implemented, auto landscape irrigation rates, and landscape irrigation starting times) on each indicator (runoff depth, discharge volume, peak runoff, peak discharge, combined sewer overflow-CSO, freshwater demand, and plant growth) at the field or watershed scale varied, providing insights for the long-term multi-functional impacts (stormwater management and rainwater harvesting/reuse) of rainwater harvesting for landscape irrigation with rain barrels/cisterns. The varied rankings of scenarios found for achieving each goal at the field or watershed scale indicated that tradeoffs in rainwater harvesting and reuse strategies exist for various goals, and the strategies should be evaluated individually for different goals to optimize the strategies. Efficient rainwater harvesting and reuse strategies at the field or watershed scale can be created by stakeholders with the assist of the SWAT-CPDN to reduce runoff depth, discharge volume, peak runoff, peak discharge, CSO, and freshwater demand, as well as improve plant growth.


Asunto(s)
Lluvia , Recursos Hídricos , Modelos Teóricos , Hidrología , Conservación de los Recursos Hídricos/métodos , Abastecimiento de Agua , Conservación de los Recursos Naturales/métodos
2.
Sci Total Environ ; 924: 171441, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447731

RESUMEN

Urban air pollution is one of the most important environmental problems for human health and several strategies have been developed for its mitigation. The objective of this study is to assess the impact of single and combined mitigation measures on concentrations of air pollutants emitted by traffic at pedestrian level in the same urban environment. The effectiveness of different scenarios of green infrastructure (GI), the implementation of photocatalytic materials and traffic low emission zones (LEZ) are investigated, as well as several combinations of LEZ and GI. A wide set of scenarios is simulated through Computational Fluid Dynamics (CFD) modelling for two different wind directions (perpendicular (0°) and 45° wind directions). Wind flow for the BASE scenario without any measure implemented was previously evaluated using wind-tunnel measurements. Air pollutant concentrations for this scenario are compared with the results obtained from the different mitigation scenarios. Reduction of traffic emissions through LEZ is found to be the most effective single measure to improve local air quality. However, GI enhances the effects of LEZ, which makes the combination of LEZ + GI a very effective measure. The effectiveness of this combination depends on the GI layout, the intensity of emission reduction in the LEZ and the traffic diversion in streets surrounding the LEZ. These findings, in line with previous literature, suggest that the implementation of GI may increase air pollutant concentrations at pedestrian level for some cases. However, this study highlights that this negative effect on air quality can turn into positive when used in combination with reductions of local traffic emissions.

3.
J Environ Manage ; 354: 120212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340665

RESUMEN

The site selection for Low Impact Development (LID) practices is a significant process. It affects the effectiveness of LID in controlling stormwater surface runoff, volume, flow rate, and infiltration. This research paper presents a comprehensive review of various methods used for LID site selection. It starts by introducing different methods and tools. Three main methods: index-based methods, GIS-based multi-criteria decision analysis (MCDA), and multi-criteria models and tools, are discussed in detail. A comparative analysis of these methods is then conducted based on ten different criteria. These criteria include the number of variables, data properties, the scale of analysis, benefits maximization approach, multi-attribute decision analysis, user-friendliness, community and stakeholder participation, and the validation methods. This comparison reveals limitations in each method. These include inadequate data availability and quality, lack of evaluation methods, comprehensive assessment criteria and spatial explicitness. These challenges underscore the need for future research to prioritize spatial clarity, broaden criteria, improve data quality through standardization, incorporate field visits and remote sensing for robust results, integrate big data, and develop web-based, open-source tools for enhanced accessibility. These key strategies provide valuable insights for advancing LID site selection methods.


Asunto(s)
Lluvia , Movimientos del Agua , Proyectos de Investigación
4.
J Sustain Water Built Environ ; 9(1): 1-12, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37701074

RESUMEN

Bioretention units were constructed at the US Environmental Protection Agency's Edison Environmental Center to evaluate drainage-to-surface runoff ratio for sizing of bioretention stormwater controls. Three sizes of hydraulically isolated bioretention units were tested in duplicate with changes in aspect ratio of length from inlet wall by doubling successive length from smallest (3.7 m) to largest (14.9 m) while width remained the same (7.1 m). The watershed areas were nominally the same, resulting in watershed-to-surface area ratios of 5.5:1 for largest duplicate units, 11:1 for the middle units, and 22:1 for the smallest. Each unit was instrumented for continuous monitoring with water content reflectometers (WCRs) and thermistors with data collected since November 2009. The bioretention units were filled with planting media initially comprising 90% sand and 10% sphagnum peat moss by volume and approximately 99% and 1%, respectively, by weight. These units were then planted between May and November of 2010 with a variety of native grasses, perennials, shrubs, and trees that were tolerant to inundation, drought and salt. In late 2012, a survey of the shrubs planted in these bioretention units was performed. The published results of the combined analyses of moisture content, rainfall, and size of shrubs indicated that the smaller units had superior shrub growth due to the more frequent saturation of the root zone as measured by WCR, while the plants in the largest units, particularly away from front wall where runoff entered, potentially relied on direct rainfall only. Starting in 2017, additional monitoring was performed in these units, including chemistry analysis by loss on ignition and total phosphorus of the engineered planting media and an additional survey of the plants. As in the previous study, plants did better in the medium (11:1) and small (22:1) bioretention units than in the largest units (5.5:1), and there was greater buildup of organic matter and phosphorus in the smaller units. One species of grass that dominated the two largest bioretention units away from the inlet was drought tolerant, which indicated that plants in these units relied on rainfall rather than stormwater runoff. Oversized units did not completely use the stromwater control volume, and many of the other original plantings grew slower or were less widespread in comparison to plantings in that smaller units that flooded more frequently and achieved greater growth. Practical Applications: Defining the size of stormwater controls can be difficult because there are often multiple objectives imposed on the final design of these structures, including safety and flooding. Results presented here would indicate that if the objective is to create a bioretention area with healthy vegetation, undersized controls may be acceptable because undersized infiltrating controls will have healthier plantings and infiltrate throughout the storm. For municipalities, this means that rights of way previously thought to be too small to use for infiltrative stormwater controls may be converted to such a purpose. This does not free municipalities from stormwater systems that address flooding and safety design objectives, but demonstrates that increasing plantings in the municipal right of way could help to address stormwater as well as other objectives, like greenhouse gas emissions, urban heat island reduction, and clean air. Distributed bioretention controls that capture part or all the runoff of the smaller, most frequent rainfall events should be incorporated throughout municipalities and into their overall stormwater control systems. If clogging by runoff is a concern, roof runoff may be more appropriate for bioretention, or other measures such as sediment capture or increased maintenance may need to be performed.

5.
Water Res ; 230: 119533, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638734

RESUMEN

The installation of green infrastructure (GI) is an effective approach to manage urban stormwater and combined sewer overflow (CSO) by restoring pre-development conditions in urban areas. Research on simulation-optimization techniques to aid with GI planning decision-making is expanding. However, due to high computational expense, the simulation-optimization methods are often based on design storm events, and it is unclear how much different rainfall scenarios (i.e., design storm events vs. long-term historical rainfall data) impact the optimal siting of GI. The Parallel Pareto Archived Dynamically Dimensioned Search (ParaPADDS) algorithm in a novel simulation-optimization tool OSTRICH-SWMM was used to leverage distributed computing resources. A case study was conducted to optimally site rainwater harvesting cisterns within 897 potential subcatchments throughout the City of Buffalo, New York. Seven design storm events with different return periods and rainfall durations and a one-month historical rainfall time series were considered. The results showed that the optimal solutions of siting cisterns using event-based scenarios, though less computationally expensive, may not perform well under continuous rainfall scenarios, suggesting design rainfall scenarios should be carefully considered for optimizing GI planning. The impact of rainfall scenarios was particularly significant in the middle region of the Pareto front of multi-objective optimization. Utilizing high-performance parallel computing, OSTRICH-SWMM is a promising tool to optimize GI at large spatial and temporal scales.


Asunto(s)
Algoritmos , Lluvia , Ciudades , Simulación por Computador , New York
6.
Sci Total Environ ; 806(Pt 2): 150447, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582871

RESUMEN

Decision Support Systems (DSS) for Sustainable Urban Drainage Systems (SUDS) are a valuable aid for SUDS widespread adoption. These tools systematize the decision-making criteria and eliminate the bias inherent to expert judgment, abridging the technical aspect of SUDS for non-technical users and decision-makers. Through the collection and careful assessment of 120 papers on SUDS models and SUDS-DSS, this review shows how these tools are built, selected, and used to assist decision-makers questions. The manuscript classifies the DSS based on the question they assist in answering, the spatial scale used, the software selected, among other aspects. SUDS-DSS aspects that require more attention are identified, including environmental and social considerations, SUDS trains performance and criteria for selection, stochasticity of rainfall, and future scenarios impact. Suggestions for SUDS-DSS are finally offered to better equip decision-makers in facing emerging stormwater challenges in urban centers.

7.
Artículo en Inglés | MEDLINE | ID: mdl-34639410

RESUMEN

The quality of water has deteriorated due to urbanization and the occurrence of urban stormwater runoff. To solve this problem, this study investigated the pollutant reduction effects from the geometric and hydrological factors of green infrastructures (GIs) to more accurately design GI models, and evaluated the factors that are required for such a design. Among several GIs, detention basins and retention ponds were evaluated. This study chose the inflow, outflow, total suspended solids (TSS), total phosphorus (TP), watershed area, GI area (bottom area in detention basins and permanent pool surface area in retention ponds), and GI volume (in both detention basins and retention ponds) for analysis and applied both ordinary least squares (OLS) regression and multiple linear regression (MLR). The geometric factors do not vary within each GI, but there may be a bias due to the number of stormwater events. To solve this problem, three methods that involved randomly extracting data with a certain range and excluding outliers were applied to the models. The accuracies of these OLS and MLR models were analyzed through the percentage bias (PBIAS), Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR). The results of this study suggest that models which consider the influent concentration combined with the hydrological and GI geometric parameters have better correlations than models that consider only a single parameter.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Hidrología , Fósforo/análisis , Estanques , Lluvia , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 707: 135487, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31759703

RESUMEN

As cities face increasing pressure from densification trends, green roofs represent a valuable source of ecosystem services for residents of compact metropolises where available green space is scarce. However, to date little research has been conducted regarding the holistic benefits of green roofs at a citywide scale, with local policymakers lacking practical guidance to inform expansion of green roofs coverage. The study addresses this issue by developing a spatial multi-criteria screening tool applied in Barcelona, Spain to determine: 1) where green roofs should be prioritized in Barcelona based on expert elicited demand for a wide range of ecosystem services and 2) what type of design of potential green roofs would optimize the ecosystem service provision. As inputs to the model, fifteen spatial indicators were selected as proxies for ecosystem service deficits and demands (thermal regulation, runoff control, habitat and pollination, food production, recreation, and social cohesion) along with five decision alternatives for green roof design (extensive, semi-intensive, intensive, naturalized, and allotment). These indicators and alternatives were analyzed probabilistically and spatially, then weighted according to feedback from local experts. Results of the assessment indicate that there is high demand across Barcelona for the ecosystem services that green roofs potentially might provide, particularly in dense residential neighborhoods and the industrial south. Experts identified habitat, pollination and thermal regulation as the most needed ES with runoff control and food production as the least demanded. Naturalized roofs generated the highest potential ecosystem service provision levels for 87.5% of rooftop area, apart from smaller areas of central Barcelona where intensive rooftops were identified as the preferable green roof design. Overall, the spatial model developed in this study offers a flexible screening based on spatial multi-criteria decision analysis that can be easily adjusted to guide municipal policy in other cities considering the effectiveness of green infrastructure as source of ecosystem services.


Asunto(s)
Técnicas de Apoyo para la Decisión , Ecosistema , Ciudades , Conservación de los Recursos Naturales , España , Análisis Espacial
9.
Front Microbiol ; 10: 982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156569

RESUMEN

The importance of natural ecosystem processes is often overlooked in urban areas. Green Infrastructure (GI) features have been constructed in urban areas as elements to capture and treat excess urban runoff while providing a range of ancillary benefits, e.g., ecosystem processes mediated by microorganisms that improve air and water quality, in addition to the associations with plant and tree rhizospheres. The objective of this study was to characterize the bacterial community and diversity in engineered soils (Technosols) of five types of GI in New York City; vegetated swales, right of way bioswales (ROWB; including street-side infiltration systems and enhanced tree pits), and an urban forest. The design of ROWB GI features directly connects with the road to manage street runoff, which can increase the Technosol saturation and exposure to urban contaminants washed from the street and carried into the GI feature. This GI design specifically accommodates dramatic pulses of water that influence the bacterial community composition and diversity through the selective pressure of contaminants or by disturbance. The ROWB had the highest biodiversity, but no significant correlation with levels of soil organic matter and microbially-mediated biogeochemical functions. Another important biogeochemical parameter for soil bacterial communities is pH, which influenced the bacterial community composition, consistent with studies in non-urban soils. Bacterial community composition in GI features showed signs of anthropogenic disturbance, including exposure to animal feces and chemical contaminants, such as petroleum products. Results suggest the overall design and management of GI features with a channeled connection with street runoff, such as ROWB, have a comprehensive effect on soil parameters (particularly organic matter) and the bacterial community. One key consideration for future assessments of GI microbial community would be to determine the source of organic matter and elucidate the relationship between vegetation, Technosol, and bacteria in the designed GI features.

10.
Sci Total Environ ; 621: 915-929, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29223122

RESUMEN

Low-impact development (LID), best management practice (BMP), and green infrastructure (GI) are semi-engineered stormwater management practices that have been widely studied and implemented worldwide. Implemented in the complex environment of urban areas, LID-BMP-GI practices often intertwine with a very large number of hydro-environmental and socio-economic considerations and constraints. Therefore, they need to be carefully selected, designed, and allocated within an urban area. Both planning and optimization can lead to more systematic and strategic approaches to address this multi-scale, multi-parameter problem of practice allocation. In this review, we first identify the main components of the strategic planning cycle, their scope and inter-relationships, and their corresponding mathematical representations. We then present a comprehensive review of the existing literature on spatial allocation optimization tools (SAOTs) for LID-BMP-GI practices and summarize the generic structure and the systematic typology of the existing SAOTs. We conclude with a discussion of several current research gaps in the spatial allocation of LID-BMP-GI practices. In this review, we aim to summarize the strategies and optimization tools for the spatial allocation of LID-BMP-GI practices that are beneficial to practitioners. The other aim is to provide recommendations for future research on the development of more advanced and comprehensive SAOTs.

11.
Sci Total Environ ; 601-602: 580-593, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575835

RESUMEN

Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP implementation in watershed management projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA