Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029963

RESUMEN

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Asunto(s)
Receptores Acoplados a la Guanilato-Ciclasa , Animales , Niño , Humanos , Ratones , Diarrea , Enterotoxinas , Guanilato Ciclasa/metabolismo , Ligandos , Receptores de Enterotoxina/genética , Receptores Acoplados a la Guanilato-Ciclasa/antagonistas & inhibidores , Receptores Acoplados a la Guanilato-Ciclasa/genética , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/patología
2.
Front Oncol ; 13: 1277265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927469

RESUMEN

Introduction: Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis. However, it has been found that these peptides may also contribute to the development of CRC. This systematic review focuses on the latest research on the GC-C signaling axis in CRC. Methods: According to the aim of the study, a systematic literature search was conducted on Medline and PubMed databases. Ultimately, a total of 40 articles were gathered for the systematic review. Results: Our systematic literature search revealed that alterations in GC-C signaling compartments in CRC tissue have demonstrated potential as diagnostic, prognostic, and therapeutic markers. This research highlights a potential treatment for CRC by targeting the GC-C signaling axis. Promising results from recent studies have explored the use of this signaling axis to develop new vaccines and chimeric antigen receptors that may be used in future clinical trials. Conclusion: The findings presented in this review provide compelling evidence that targeting the GC-C signaling axis may be an advantageous approach for treating CRC.

4.
Microorganisms ; 11(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37630557

RESUMEN

The intestinal peptide hormones guanylin (GN) and uroguanylin (UGN) interact with the epithelial cell receptor guanylate cyclase C to regulate fluid homeostasis. Some enterotoxigenic Escherichia coli (ETEC) produce heat-stable enterotoxin (ST), which induces diarrhea by mimicking GN and UGN. Plasma concentrations of prohormones of GN (proGN) and UGN (proUGN) are reportedly decreased during chronic diarrheal diseases. Here we investigate whether prohormone concentrations also drop during acute diarrhea caused by ST-producing ETEC strains TW10722 and TW11681. Twenty-one volunteers were experimentally infected with ETEC. Blood (n = 21) and urine (n = 9) specimens were obtained immediately before and 1, 2, 3, and 7 days after ETEC ingestion. Concentrations of proGN and proUGN were measured by ELISA. Urine electrolyte concentrations were measured by photometry and mass spectrometry. Ten volunteers developed diarrhea (D group), and eleven did not (ND group). In the D group, plasma proGN, but not proUGN, concentrations were substantially reduced on days 2 and 3, coinciding with one day after diarrhea onset. No changes were seen in the ND group. ETEC diarrhea also seemed to affect diuresis, the zinc/creatinine ratio, and sodium and chloride secretion levels in urine. ETEC-induced diarrhea causes a reduction in plasma proGN and could potentially be a useful marker for intestinal isotonic fluid loss.

5.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298592

RESUMEN

In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.


Asunto(s)
Factor Natriurético Atrial , Péptidos Natriuréticos , Factor Natriurético Atrial/química , Péptidos , Vasodilatadores , Péptido Natriurético Encefálico
6.
Front Endocrinol (Lausanne) ; 14: 1185456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274331

RESUMEN

Introduction: Obesity contributes to ectopic fat deposition in non-adipose organs, including the pancreas. Pancreas steatosis associates with inflammation and ß-cell dysfunction, contributing to the onset of insulin resistance and type 2 diabetes. An improvement of pancreatic steatosis and indices of insulin resistance is observed following bariatric surgery, but the underlying mechanisms remain unknown. We sought to analyze whether guanylin (GUCA2A) and uroguanylin (GUCA2B), two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of pancreas fat accumulation after bariatric surgery. Methods: Pancreas steatosis, inflammation, islet number and area were measured in male Wistar rats with diet-induced obesity (n=125) subjected to surgical (sham operation and sleeve gastrectomy) or dietary (pair-fed to the amount of food eaten by gastrectomized animals) interventions. The tissue distribution of guanylate cyclase C (GUCY2C) and the expression of the guanylin system were evaluated in rat pancreata by real-time PCR, Western-blot and immunohistochemistry. The effect of guanylin and uroguanylin on factors involved in insulin secretion and lipogenesis was determined in vitro in RIN-m5F ß-cells exposed to lipotoxic conditions. Results: Sleeve gastrectomy reduced pancreas steatosis and inflammation and improved insulin sensitivity and synthesis. An upregulation of GUCA2A and GUCY2C, but not GUCA2B, was observed in pancreata from rats with diet-induced obesity one month after sleeve gastrectomy. Interestingly, both guanylin and uroguanylin diminished the lipotoxicity in palmitate-treated RIN-m5F ß-cells, evidenced by lower steatosis and downregulated lipogenic factors Srebf1, Mogat2 and Dgat1. Both guanylin peptides reduced insulin synthesis (Ins1 and Ins2) and release from RIN-m5F ß-cells, but only guanylin upregulated Wnt4, a factor that controls ß-cell proliferation and function. Discussion: Together, sleeve gastrectomy reduced pancreatic steatosis and improved ß-cell function. Several mechanisms, including the modulation of inflammation and lipogenesis as well as the upregulation of GUCA2A in the pancreas, might explain this beneficial effect of bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Trastornos del Metabolismo de los Lípidos , Masculino , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratas Wistar , Obesidad/cirugía , Obesidad/metabolismo , Páncreas/metabolismo , Péptidos/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Dieta , Inflamación/metabolismo
7.
Per Med ; 19(5): 457-472, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35920071

RESUMEN

Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.


Colorectal cancer is a leading cause of death in the USA. In recent years, there has been a shift in the field of oncology from generic treatments, such as surgery and chemotherapy, to personalized molecular therapies, which focus on targeting specific attributes of each patient's unique cancer. Guanylyl cyclase C is a receptor expressed in the intestinal tract, where it regulates fluid secretion and prevents tumor formation. Beyond its function in the healthy intestine, it is expressed in colorectal tumors, and other types of cancer, where it regulates transformation. Therefore, guanylyl cyclase C can serve as a useful target in cancer for prevention and therapy, as well as a marker for tumor cell detection.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Receptores de Enterotoxina
8.
Gen Comp Endocrinol ; 318: 113986, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114197

RESUMEN

Guanylin (GN) stimulates Cl- secretion into the intestinal lumen of seawater-acclimated eels, but the molecular mechanisms of transepithelial Cl- transport are still unknown. In Ussing chamber experiments, we confirmed that mucosal application of eel GN reversed intestinal serosa-negative potential difference, indicating Cl- secretion. Serosal application of DNDS or mucosal application of DPC inhibited the GN effect, but serosal application of bumetanide had no effect. Removal of HCO3- from the serosal fluid also inhibited the GN effect. In intestinal sac experiments, mucosal GN stimulated luminal secretion of both Cl- and Na+, which was blocked by serosal DNDS. These results suggest that Cl- is taken up at the serosal side by DNDS-sensitive anion exchanger (AE) coupled with Na+-HCO3- cotransporter (NBC) but not by Na+-K+-2Cl- cotransporter 1 (NKCC1), and Cl- is secreted by unknown DPC-sensitive Cl- channel (ClC) at the mucosal side. The transcriptomic analysis combined with qPCR showed low expression of NKCC1 gene and no upregulation of the gene after seawater transfer, while high expression of ClC2 gene and upregulation after seawater transfer. In addition, SO42- transporters (apical Slc26a3/6 and basolateral Slc26a1) are also candidates for transcellular Cl- secretion in exchange of luminal SO42. Na+ secretion could occur through a paracellular route, as Na+-leaky claudin15 was highly expressed and upregulated after seawater transfer. High local Na+ concentration in the lateral interspace produced by Na+/K+-ATPase (NKA) coupled with K+ channels (Kir5.1b) seems to facilitate the paracellular transport. In situ hybridization confirmed the expression of the candidate genes in the epithelial enterocytes. Together with our previous results, we suggest that GN stimulates basolateral NBCela/AE2 and apical ClC2 to increase transcellular Cl- secretion in seawater eel intestine, which differs from the involvement of apical CFTR and basolateral NKCC1 as suggested in mammals and other teleosts.


Asunto(s)
Anguilas , Péptidos Natriuréticos , Animales , Cloruros , Anguilas/metabolismo , Hormonas Gastrointestinales , Intestinos/fisiología , Mamíferos/metabolismo , Péptidos Natriuréticos/metabolismo , Agua de Mar
9.
Acta Histochem ; 124(1): 151811, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34920371

RESUMEN

Inflammatory bowel disease (IBD) impacts patient quality of life significantly. The dysfunction of intestinal immune barrier is closely associated with IBD. The guanylate cyclase-C (GC-C) signaling pathway activated by the guanylin (Gn) ligand is involved in the occurrence and development of IBD. However, how it regulates the intestinal immune barrier is still unclear. To investigate the effect of the GC-C pathway on intestinal mucosal immunity and provide experimental basis for seeking new therapeutic strategies for IBD, we focused on Caco-2 cells and intestinal intra-epithelial lymphocytes (IELs), which displayed inflammatory responses induced by lipopolysaccharide (LPS). GC-C activity was modulated by transfection with Gn overexpression or GC-C shRNA plasmid. Levels of Gn, GC-C, and CFTR; transepithelial electrical resistance (TER); paracellula r permeability; and levels of IL-2, IFN-γ, and secretory IgA (sIgA) were examined. The study found that after stimulation with LPS, Gn, GC-C, CFTR, TER, and sIgA levels were all significantly reduced, IL-2 and IFN-γ levels as well as paracellular permeability were significantly increased. These indicators changed inversely and significantly after transfection with the Gn overexpression vector. Compared to the vector controls, GC-C-silenced cells displayed significantly decreased levels of GC-C, CFTR, and TER and increased levels of IL-2, IFN-γ, and paracellular permeability stimulated by LPS. The results show that Gn ligand can protect the intestinal immune barrier by activating the GC-C signaling pathway, which may be helpful for the development of new treatments for IBD. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon request.


Asunto(s)
Calidad de Vida , Transducción de Señal , Células CACO-2 , Hormonas Gastrointestinales , Guanilato Ciclasa , Humanos , Ligandos , Péptidos Natriuréticos , Transducción de Señal/genética
10.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34954189

RESUMEN

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Carcinogénesis/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorrectales/patología , Humanos , Ligandos , Región de Control de Posición , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
Gen Comp Endocrinol ; 315: 113797, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957096

RESUMEN

Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.


Asunto(s)
GMP Cíclico , Guanilato Ciclasa , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Unión Proteica , Transducción de Señal
12.
Front Physiol ; 11: 599582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381053

RESUMEN

Psychological stress is deeply involved in the pathophysiology of not only mental illness but also functional gastrointestinal disorders. In the present study, we examined the relationship between psychological stress and abnormality of stool properties, focusing on the alteration of plasma glucocorticoid and guanylin (GN)/uroguanylin (UGN) expression in the colon. A murine model of chronic social defeat stress (CSDS) was established by exposing a C57BL/6N intruder mouse to a CD-1 aggressor mouse for 3-5 min. Thereafter the mice were kept in the same cage but separated by a divider for the remainder of the day. This procedure was repeated for 10 consecutive days, and then a social interaction test was performed to evaluate social avoidance. Fresh fecal and blood samples were collected for stool property analysis and measurement of the plasma glucocorticoid level by ELISA. The expression of GN, UGN, and guanylate cyclase 2C in the colonic tissues was examined by real-time RT-PCR and immunohistochemistry. Moreover, Lovo cells were stimulated with dexamethasone, and the expression of GN/UGN mRNA was examined. In the CSDS group, the time spent in the social interaction zone was significantly shorter when the CD-1 aggressor mouse was present than when it was absent. The social interaction ratio was also significantly lower in the CSDS group relative to the controls. The mean Bristol scale score was significantly lower in the CSDS group, but the fecal sodium concentration did not differ between CSDS mice and controls. The level of plasma corticosterone was significantly higher in the CSDS group than in the controls immediately after the 10th day of CSDS. The expression of both GN and UGN was significantly decreased in the CSDS mice. GN was expressed in all colonic epithelial cells, and UGN was expressed in ovoid or pyramidal epithelial cells in the colonic mucosa. The expression of both GN and UGN was significantly decreased in the CSDS mice relative to controls. The expression of both GN and UGN was significantly suppressed in Lovo cells upon stimulation with dexamethasone. Psychological stress-induced glucocorticoid may suppress colonic GN/UGN expression, resulting in a change in stool properties leading to constipation.

13.
Expert Rev Clin Pharmacol ; 13(10): 1125-1137, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945718

RESUMEN

Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.


Asunto(s)
Neoplasias Colorrectales/terapia , Terapia Molecular Dirigida , Receptores de Enterotoxina/efectos de los fármacos , Animales , Quimioprevención/métodos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Agonistas de la Guanilato Ciclasa C/administración & dosificación , Agonistas de la Guanilato Ciclasa C/farmacología , Humanos , Inmunoterapia/métodos , Estadificación de Neoplasias , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Transducción de Señal
14.
Cancer Biol Ther ; 21(9): 799-805, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32594830

RESUMEN

Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Genes Supresores de Tumor , Receptores de Enterotoxina/genética , Poliposis Adenomatosa del Colon/patología , Animales , Transformación Celular Neoplásica , Silenciador del Gen , Humanos , Masculino , Ratones
15.
Front Physiol ; 10: 1237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611814

RESUMEN

Guanylate cyclase-C (GC-C) is a multifunctional receptor encoded by the GUCY2C gene, representing an attractive target for therapy in several gastrointestinal diseases in humans. Little is known about this system in horses. We investigated for the first time the gene expression of guanylin, uroguanylin and GC-C receptors in different horse's gastrointestinal tracts. Tissue samples from stomach, duodenum, jejunum, ileum, head and body of cecum, left and right dorsal colon, left and right ventral colon, pelvic flexure, transverse colon, descending colon and rectum were collected from adult horses within 1 h post mortem. For each sample, total RNA was extracted from 100 mg of ground tissue, and qRT-PCR performed on GUCA2a, GUCA2b and GUCY2 transcripts on a CFX96 Touch instrument. Data analysis was carried out with Bio-Rad CFX Manager software, and genes of interest normalized relative to the abundance of the two reference genes (SDHA, HPRT). Additionally, the protein expression levels of GC-C receptor were analyzed through western blotting. A common pattern of expression throughout the gastrointestinal lumen for all three investigated transcripts was found. The expression of GUCA2a, GUCA2b and GUCY2 genes was higher in jejunum, ileum, descending colon and rectum. The levels of expression of GC-C protein confirmed these data. The findings of this study might open new scenarios for the therapeutic approach to enteric diseases of horse using selective agonists of GC-C.

16.
Am J Physiol Cell Physiol ; 317(6): C1239-C1246, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553648

RESUMEN

Recently, we showed that double-transgenic rats overexpressing guanylin (Gn), a bioactive peptide, and its receptor, guanylyl cyclase-C (GC-C), specifically in macrophages demonstrate an antiobesity phenotype and low-expression levels of proinflammatory cytokines in the mesenteric fat even when fed a high-fat diet. Here, we examined the levels and mechanism of Gn and GC-C transcription following saturated fatty acid and lipopolysaccharide (LPS), an activator of Toll-like receptor 4 (TLR4), exposure by using the NR8383 macrophage cell line. In addition, the levels of guanylin and cGMP were increased by addition of either palmitic acid or LPS. Next, we investigated the interaction of the gene transcription and nuclear factor-κB (NF-κB) by using an NF-κB inhibitor and chromatin immunoprecipitation assay. We showed that palmitic acid induced Gn gene expression via TLR4 and NF-κB. Moreover, we demonstrated that NF-κB binding to the Gn promoter was responsible for the induction of gene transcription by palmitic acid or LPS. Our results indicate that saturated fatty acids such as palmitic acid activate Gn gene expression via the NF-κB pathway, raising the possibility that the activated Gn-GC-C system may contribute to the inhibition of high-fat diet-induced proinflammatory cytokines in macrophages.


Asunto(s)
Hormonas Gastrointestinales/genética , Lipopolisacáridos/farmacología , Macrófagos Alveolares/efectos de los fármacos , FN-kappa B/genética , Péptidos Natriuréticos/genética , Ácido Palmítico/farmacología , Receptor Toll-Like 4/genética , Animales , Línea Celular , GMP Cíclico/inmunología , GMP Cíclico/metabolismo , Hormonas Gastrointestinales/agonistas , Hormonas Gastrointestinales/inmunología , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Macrófagos Alveolares/citología , Macrófagos Alveolares/inmunología , Ratones , FN-kappa B/inmunología , Péptidos Natriuréticos/agonistas , Péptidos Natriuréticos/inmunología , Células RAW 264.7 , Ratas , Receptores Acoplados a la Guanilato-Ciclasa/genética , Receptores Acoplados a la Guanilato-Ciclasa/inmunología , Transducción de Señal , Células THP-1 , Receptor Toll-Like 4/inmunología
17.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31061144

RESUMEN

Infection with enterotoxigenic Escherichia coli (ETEC) is a common cause of childhood diarrhea in low- and middle-income countries, as well as of diarrhea among travelers to these countries. In children, ETEC strains secreting the heat-stable toxin (ST) are the most pathogenic, and there are ongoing efforts to develop vaccines that target ST. One important challenge for ST vaccine development is to construct immunogens that do not elicit antibodies that cross-react with guanylin and uroguanylin, which are endogenous peptides involved in regulating the activity of the guanylate cyclase-C (GC-C) receptor. We immunized mice with both human ST (STh) and porcine ST (STp) chemically coupled to bovine serum albumin, and the resulting sera neutralized the toxic activities of both STh and STp. This suggests that a vaccine based on either ST variant can confer cross-protection. However, several anti-STh and anti-STp sera cross-reacted with the endogenous peptides, suggesting that the ST sequence must be altered to reduce the risk of unwanted cross-reactivity. Epitope mapping of four monoclonal anti-STh and six anti-STp antibodies, all of which neutralized both STh and STp, revealed that most epitopes appear to have at least one amino acid residue shared with guanylin or uroguanylin. Despite this, only one monoclonal antibody displayed demonstrable cross-reactivity to the endogenous peptides, suggesting that targeted mutations of a limited number of ST residues may be sufficient to obtain a safe ST-based vaccine.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Enterotoxinas/inmunología , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Hormonas Gastrointestinales/inmunología , Péptidos Natriuréticos/inmunología , Animales , Toxinas Bacterianas/administración & dosificación , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Reacciones Cruzadas , Escherichia coli Enterotoxigénica/genética , Enterotoxinas/administración & dosificación , Enterotoxinas/química , Enterotoxinas/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/administración & dosificación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Vacunas contra Escherichia coli/administración & dosificación , Vacunas contra Escherichia coli/genética , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Porcinos
18.
Hum Pathol ; 87: 103-114, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30716341

RESUMEN

Colorectal cancers (CRCs) initiate through distinct mutations, including in APC pathway components leading to tubular adenomas (TAs); in BRAF, with epigenetic silencing of CDX2, leading to serrated adenomas (SAs); and in the DNA mismatch repair machinery driving microsatellite instability (MSI). Transformation through the APC pathway involves loss of the hormone GUCA2A that silences the tumor-suppressing receptor GUCY2C. Indeed, oral hormone replacement is an emerging strategy to reactivate GUCY2C and prevent CRC initiation and progression. Moreover, retained expression by tumors arising from TAs has established GUCY2C as a diagnostic and therapeutic target to prevent and treat metastatic CRC. Here, we defined the potential role of the GUCA2A-GUCY2C axis and its suitability as a target in tumors arising through the SA and MSI pathways. GUCA2A hormone expression was eliminated in TAs, SAs, and MSI tumors compared to their corresponding normal adjacent tissues. In contrast to the hormone, the tumor-suppressing receptor GUCY2C was retained in TA and MSI tumors. Surprisingly, GUCY2C expression was nearly eliminated in SAs, reflecting loss of the transcription factor CDX2. Changes in the GUCA2A-GUCY2C axis in human SAs and MSI tumors were precisely recapitulated in genetic mouse models. These data reveal the possibility of GUCA2A loss silencing GUCY2C in the pathophysiology of, and oral hormone replacement to restore GUCY2C signaling to prevent, MSI tumors. Also, they highlight the potential for targeting GUCY2C to prevent and treat metastases arising from TA and MSI tumors. In contrast, loss of GUCY2C excludes patients with SAs as candidates for GUCY2C-based prevention and therapy.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Receptores de Enterotoxina/genética , Adenoma/patología , Adulto , Anciano , Animales , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Transducción de Señal
19.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29463616

RESUMEN

Nontyphoidal Salmonella disease contributes toward significant morbidity and mortality across the world. Host factors, including gamma interferon, tumor necrosis factor alpha, and gut microbiota, significantly influence the outcome of Salmonella pathogenesis. However, the entire repertoire of host protective mechanisms contributing to Salmonella pathogenicity is not completely appreciated. Here, we investigated the roles of receptor guanylyl cyclase C (GC-C), which is predominantly expressed in the intestine and regulates intestinal cell proliferation and fluid-ion homeostasis. Mice deficient in GC-C (Gucy2c-/-) displayed accelerated mortality compared with that for wild-type mice following infection via the oral route, even though both groups possessed comparable systemic Salmonella infection burdens. Survival following intraperitoneal infection remained similar in both groups, indicating that GC-C offered protection via a gut-mediated response. The serum cortisol level was higher in Gucy2c-/- mice than wild-type (Gucy2c+/+) mice, and an increase in infection-induced thymic atrophy with a loss of immature CD4+ CD8+ double-positive thymocytes was observed. Accelerated and enhanced damage in the ileum, including submucosal edema, epithelial cell damage, focal tufting, and distortion of the villus architecture, was seen in Gucy2c-/- mice concomitantly with a larger number of ileal tissue-associated bacteria. Transcription of key mediators of Salmonella-induced inflammation (interleukin-22/Reg3ß) was altered in Gucy2c-/- mice in comparison to that in Gucy2c+/+ mice. A reduction in fecal lactobacilli, which are protective against Salmonella infection, was observed in Gucy2c-/- mice. Gucy2c-/- mice cohoused with wild-type mice continued to show reduced amounts of lactobacilli and increased susceptibility to infection. Our study, therefore, suggests that the receptor GC-C confers a survival advantage during gut-mediated Salmonella enterica serovar Typhimurium pathogenesis, presumably by regulating Salmonella effector mechanisms and maintaining a beneficial microbiome.


Asunto(s)
Citocinas/inmunología , Guanilato Ciclasa/inmunología , Receptores Acoplados a la Guanilato-Ciclasa/inmunología , Salmonelosis Animal/inmunología , Salmonella enterica/genética , Salmonella enterica/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Animales , Citocinas/metabolismo , Guanilato Ciclasa/metabolismo , Íleon/inmunología , Íleon/microbiología , Ratones , Modelos Animales , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Salmonelosis Animal/microbiología , Serogrupo , Transducción de Señal/fisiología
20.
Peptides ; 101: 32-43, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29289697

RESUMEN

AIM: To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS: Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS: GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION: GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.


Asunto(s)
Mantenimiento del Peso Corporal , Células Enteroendocrinas/metabolismo , Derivación Gástrica , Hormonas Gastrointestinales/biosíntesis , Regulación de la Expresión Génica , Péptidos Natriuréticos/biosíntesis , Adulto , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/cirugía , Femenino , Proteínas Activadoras de la Guanilato-Ciclasa/biosíntesis , Humanos , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA