Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
1.
Br J Haematol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103182

RESUMEN

Severe aplastic anaemia (SAA) is a rare and life-threatening bone marrow failure disorder. We used data from the transplant outcomes in aplastic anaemia study to characterize mosaic chromosomal alterations (mCAs) in the peripheral blood of 738 patients with acquired SAA and evaluate their associations with telomere length (TL) and survival post-haematopoietic cell transplant (HCT). The median age at HCT was 20.4 years (range = 0.2-77.4). Patients with SAA had shorter TL than expected for their age (median TL percentile for age: 35.7th; range <1-99.99). mCAs were detected in 211 patients (28.6%), with chr6p copy-neutral loss of heterozygosity (6p-CNLOH) in 15.9% and chr7 loss in 3.0% of the patients; chrX loss was detected in 4.1% of female patients. Negative correlations between mCA cell fraction and measured TL (r = -0.14, p = 0.0002), and possibly genetically predicted TL (r = -0.07, p = 0.06) were noted. The post-HCT 3-year survival probability was low in patients with chr7 loss (39% vs. 72% in patients with chr6-CNLOH, 60% in patients with other mCAs and 70% in patients with no mCAs; p-log rank = 0.001). In multivariable analysis, short TL (p = 0.01), but not chr7 loss (p = 0.29), was associated with worse post-HCT survival. TL may guide clinical decisions in patients with SAA.

2.
Animals (Basel) ; 14(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39123746

RESUMEN

The objective of the present study was to analyze the genetic diversity, individual-based assessment of population structure, and admixture in the Dülmen wild horse population in comparison to warmblood, coldblood, and primitive horse populations. The Dülmen wild horse is kept as a unique horse population in the Merfelder Bruch near Dülmen in Westphalia, Germany, and since 1856 has been managed by the Dukes of Croÿ. The Dülmen wild horse population is exposed to the natural conditions of the Merfelder Bruch all year round without human interventions for feeding and veterinary care. In the present study, genetic diversity was estimated for 101 Dülmen wild horses using multilocus genotypic information from a set of 29 autosomal microsatellites and compared with 587 horses from 17 different horse populations. Dülmen wild horses maintained a high degree of genetic diversity, with an average observed heterozygosity of 0.68, a mean number of 6.17 alleles, and heterozygote deficit of -0.035. Pairwise genetic distances (FST, Nei's standard, and Cavalli-Sforza distances) were closest to German coldblood breeds, Polish Konik, and Icelandic horses and most divergent from Sorraia and Przewalski's horses. Neighbor joining dendrogram and PCA plots showed a clear distinction of Dülmen wild horses from other populations, particularly from Przewalski horses. Posterior Bayesian analysis confirmed clear differentiation from other horse populations without an admixture pattern and a high membership index (0.92). It was possible to distinguish Dülmen wild horses from Dülmen and Polish Konik horses. In conclusion, Dülmen wild horses show a notable separation from other German horse breeds and primitive horse populations and may serve as a resource to study evolution of equine domestication.

3.
Folia Neuropathol ; 62(2): 113-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165200

RESUMEN

INTRODUCTION: First reports associated mutations in triggering receptors expressed on myeloid cells 2 (TREM2) with autosomal recessive Nasu-Hakola disease characterized by painful bone cysts and progressive presenile dementia with psychotic symptoms; however, recent TREM2 biallelic rare variants are suggested to be causative also for the behavioral variant of frontotemporal dementia (bvFTD) without bone involvement. MATERIAL AND METHODS: Clinical data of three unrelated bvFTD patients carrying TREM2 biallelic variants were evaluated. All patients underwent neurological, psychiatric, and cognitive evaluation and neuroimaging. A full neuropsychological assessment was performed in two cases. RESULTS: Two patients carried compound heterozygous TREM2 variants, p.R62C and p.T66M, and one carried the homozygous p.D87N variant. Based on all obtained clinical and neuroimaging data, a behavioral variant of frontotemporal dementia was diagnosed in all cases. Their clinical manifestation was typical with neuropsychiatric and cognitive features, without bone abnormalities. CONCLUSIONS: Despite all three subjects partially resembling clinical manifestations of Nasu-Hakola disease with TREM2 mutations, we reveal some distinct features, including age of onset, neuroimaging findings, or disease course.


Asunto(s)
Demencia Frontotemporal , Glicoproteínas de Membrana , Receptores Inmunológicos , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/genética , Masculino , Femenino , Persona de Mediana Edad , Mutación/genética , Panencefalitis Esclerosante Subaguda/genética , Adulto , Osteocondrodisplasias/genética , Lipodistrofia/genética
4.
R Soc Open Sci ; 11(7): 240490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086821

RESUMEN

Only approximately 356 North Atlantic right whales (Eubalaena glacialis) remain. With extremely low levels of genetic diversity, limited options for mates, and variation in reproductive success across females, there is concern regarding the potential for genetic limitations of population growth from inbreeding depression. In this study, we quantified reproductive success of female North Atlantic right whales with a modified de-lifing approach using reproductive history information collected over decades of field observations. We used double-digest restriction site-associated sequencing to sequence approximately 2% of the genome of 105 female North Atlantic right whales and combined genomic inbreeding estimates with individual fecundity values to assess evidence of inbreeding depression. Inbreeding depression could not explain the variance in reproductive success of females, however we present evidence that inbreeding depression may be affecting the viability of inbred fetuses-potentially lowering the reproductive success of the species as a whole. Combined, these results allay some concerns that genetic factors are impacting species survival as genetic diversity is being retained through selection against inbred fetuses. While still far fewer calves are being born each year than expected, the small role of genetics underlying variance in female fecundity suggests that variance may be explained by external factors that can potentially be mitigated through protection measures designed to reduce serious injury and mortality from human activities.

5.
Front Plant Sci ; 15: 1429279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091313

RESUMEN

Cultivated potatoes are incredibly diverse, ranging from diploid to pentaploid and encompass four different species. They are adapted to disparate environments and conditions and carry unique alleles for resistance to pests and pathogens. Describing how diversity is partitioned within and among these populations is essential to understanding the potato genome and effectively utilizing landraces in breeding. This task is complicated by the difficulty of making comparisons across cytotypes and extensive admixture within section petota. We genotyped 730 accessions from the US Potato genebank including wild diploids and cultivated diploids and tetraploids using Genotype-by-sequencing. This data set allowed us to interrogate population structure and diversity as well as generate core subsets which will support breeders in efficiently screening genebank material for biotic and abiotic stress resistance alleles. We found that even controlling for ploidy, tetraploid material exhibited higher observed and expected heterozygosity than diploid accessions. In particular group chilotanum material was the most heterozygous and the only taxa not to exhibit any inbreeding. This may in part be because group chilotanum has a history of introgression not just from wild species, but landraces as well. All group chilotanum, exhibits introgression from group andigenum except clones from Southern South America near its origin, where the two groups are not highly differentiated. Moving north, we do not observe evidence for the same level of admixture back into group andigenum. This suggests that extensive history of admixture is a particular characteristic of chilotanum.

6.
New Phytol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187985

RESUMEN

Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.

7.
Animal ; 18(8): 101236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39096602

RESUMEN

Tunchang pigs, mainly distributed throughout Hainan Province of China, are well-known for their superior meat quality, crude feed tolerance, and adaptability to high temperatures and humidity. Runs of homozygosity (ROH) can provide valuable information about the inbreeding coefficient in individuals and selection signals that may reveal candidate genes associated with key functional traits. Runs of heterozygosity (ROHet) are commonly associated with balance selection, which can help us understand the adaptive evolutionary history of domestic animals. In this study, we investigated ROHs and ROHets in 88 Tunchang pigs. We also compared the estimates of inbreeding coefficients in individuals calculated based on four methods. In summary, we detected a total of 16 ROH islands in our study, and 100 genes were found within ROH regions. These genes were correlated with economically important traits such as reproduction (e.g., SERPIND1, HIRA), meat quality (e.g., PI4KA, TBX1), immunity (e.g., ESS2, RANBP1), adaption to heat stress (TXNRD2 and DGCR8), and crude food tolerance (TRPM6). Moreover, we discovered 18 ROHet islands harbouring genes associated with reproduction (e.g., ARHGEF12, BMPR2), immune system (e.g., BRD4, DNMT3B). These findings may help us design effective breeding and conservation strategies for this unique breed.


Asunto(s)
Heterocigoto , Homocigoto , Animales , Porcinos/genética , Endogamia , China , Sus scrofa/genética , Femenino , Genoma , Masculino
8.
DNA Repair (Amst) ; 141: 103727, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098164

RESUMEN

Loss of Heterozygosity (LOH) due to mitotic recombination is frequently associated with the development of various cancers (e.g. retinoblastoma). LOH is also an important source of genetic diversity, especially in organisms where meiosis is infrequent. Irc20 is a putative helicase, and E3 ubiquitin ligase involved in DNA double-strand break repair pathway. We analyzed genome-wide LOH events, gross chromosomal changes, small insertion-deletions and single nucleotide mutations in eleven S. cerevisiae mutation accumulation lines of irc20∆, which underwent 50 mitotic bottlenecks. LOH enhancement in irc20∆ was small (1.6 fold), but statistically significant as compared to the wild type. Short (≤ 1 kb) and long (> 10 kb) LOH tracts were significantly enhanced in irc20∆. Both interstitial and terminal LOH events were also significantly enhanced in irc20∆ compared to the wild type. LOH events in irc20∆ were more telomere proximal and away from centromeres compared to the wild type. Gross chromosomal changes, single nucleotide mutations and in-dels were comparable between irc20∆ and wild type. Locus based and genome-wide analysis of meiotic recombination showed that meiotic crossover frequencies are not altered in irc20∆. These results suggest Irc20 primarily regulates mitotic recombination and does not affect meiotic crossovers. Our results suggest that the IRC20 gene is important for regulating LOH frequency and distribution.


Asunto(s)
Pérdida de Heterocigocidad , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mitosis , Mutación , Reparación del ADN , Meiosis , Roturas del ADN de Doble Cadena
9.
BMC Genomics ; 25(1): 772, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118059

RESUMEN

BACKGROUND: The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS: HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS: Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.


Asunto(s)
Variación Genética , Homocigoto , Endogamia , Selección Genética , Caballos/genética , Animales , Islandia , Genómica/métodos , Polimorfismo de Nucleótido Simple , Heterocigoto , Cruzamiento , Genética de Población
10.
Mol Syndromol ; 15(4): 284-288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119446

RESUMEN

Introduction: Canavan disease is an autosomal recessive disorder that causes accumulation of N-acetyl ASPArtic acid in the brain due to ASPArtoacylase deficiency with homozygous or compound heterozygous pathogenic variants in the ASPA gene located on the short arm of chromosome 17. Clinical findings are hypotonia, progressive macrocephaly, deafness, nystagmus, blindness, and brain atrophy. Case Presentation: A one-year-old female case was evaluated in our medical genetics clinic for hypotonia, nystagmus, and strabismus. Chromosome analysis and array-comparative genomic hybridization showed no pathology. Clinical exome sequencing by next-generation sequencing was performed and a homozygous likely pathogenic variant NM_000049.4(ASPA):c.857C > A p.(Ala286Asp) was identified. Sanger sequencing of the parents showed that the index case had a homozygous genotype, the father was heterozygous and the mother had a wild genotype for the identified variant in ASPA. A single nucleotide polymorphism (SNP) array test was planned for the family to explain this homozygosity and a loss of maternal heterozygosity was determined in the 17p13.3-p13.2 region of the ASPA gene. Conclusion: In this report, we aimed to present the first case of Canavan disease with maternal loss of heterozygosity in the ASPA gene.

11.
J Biotechnol ; 394: 92-102, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181209

RESUMEN

This study addresses the challenges posed by rainfall variability, leading to water deficits during critical stages of crop growth, resulting in a drastic reduction of cotton yield. In a comprehensive evaluation, thirty cotton genotypes, including five Gossypium arboreum (wild) and twenty-five Gossypium hirsutum (cultivated), were grown under rainfed and irrigated conditions. Drought tolerance indices (DTI) were evaluated, categorizing genotypes based on their resilience. Further, in-vitro screening at the seedling stage (20 days) under PEG-induced drought identified tolerant genotypes exhibiting elevated levels of free proline (19.07±5.31 mg.g-100fr.wt.), amino acids (34.59±6.51 mg.g-100fr.wt.), soluble proteins (13.73±2.65 mg.g-1fr.wt.), and glycine betaine (10.95±3.62 mg.g-100fr.wt.), in their leaves, positively correlating (p<0.001) with relative water content (87.70±3.45 %). Molecular analysis using drought-specific simple sequence repeats (SSR) markers revealed significant genetic variability in a cotton genotypes, with lower observed and higher expected heterozygosity. F statistics exposed a higher level of gene flow corresponding to low differentiation among populations. Among the genotypes group, wild GAM-67 and cultivated Deviraj emerged as the most potent, exhibiting the higher DTI and diverse gene pools. Study exhibited higher total gene diversity in drought-tolerant wild GAM-67 (0.8501) and greater expected heterozygosity (0.626) and gene flow (0.6731) in cultivated Deviraj, underlining their robust genetic adaptability to drought conditions. The integrated approach of field evaluations, in-vitro screening, and molecular analyses explained substantial genetic diversity, with the identification of promising genotypes displaying higher drought tolerance indices, elevated levels of stress-related biochemical osmolytes, and pronounced genetic adaptability, thereby contributing to the advancement of breeding initiatives for enhanced drought resilience in cotton.

12.
Mol Ecol ; : e17491, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192633

RESUMEN

Telomere lengths and telomere dynamics can correlate with lifespan, behaviour and individual quality. Such relationships have spurred interest in understanding variation in telomere lengths and their dynamics within and between populations. Many studies have identified how environmental processes can influence telomere dynamics, but the role of genetic variation is much less well characterized. To provide a novel perspective on how telomeric variation relates to genetic variability, we longitudinally sampled individuals across a narrow hybrid zone (n = 127 samples), wherein two Manacus species characterized by contrasting genome-wide heterozygosity interbreed. We measured individual (n = 66) and population (n = 3) differences in genome-wide heterozygosity and, among hybrids, amount of genetic admixture using RADseq-generated SNPs. We tested for population differences in telomere lengths and telomere dynamics. We then examined how telomere lengths and telomere dynamics covaried with genome-wide heterozygosity within populations. Hybrid individuals exhibited longer telomeres, on average, than individuals sampled in the adjacent parental populations. No population differences in telomere dynamics were observed. Within the parental population characterized by relatively low heterozygosity, higher genome-wide heterozygosity was associated with shorter telomeres and higher rates of telomere shortening-a pattern that was less apparent in the other populations. All of these relationships were independent of sex, despite the contrasting life histories of male and female manakins. Our study highlights how population comparisons can reveal interrelationships between genetic variation and telomeres, and how naturally occurring hybridization and genome-wide heterozygosity can relate to telomere lengths and telomere dynamics.

13.
J Fungi (Basel) ; 10(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39194902

RESUMEN

The "cost of domestication" hypothesis suggests that the domestication of wild species increases the number, frequency, and/or proportion of deleterious genetic variants, potentially reducing their fitness in the wild. While extensively studied in domesticated species, this phenomenon remains understudied in fungi. Here, we used Saccharomyces cerevisiae, the world's oldest domesticated fungus, as a model to investigate the genomic characteristics of deleterious variants arising from fungal domestication. Employing a graph-based pan-genome approach, we identified 1,297,761 single nucleotide polymorphisms (SNPs), 278,147 insertion/deletion events (indels; <30 bp), and 19,967 non-redundant structural variants (SVs; ≥30 bp) across 687 S. cerevisiae isolates. Comparing these variants with synonymous SNPs (sSNPs) as neutral controls, we found that the majority of the derived nonsynonymous SNPs (nSNPs), indels, and SVs were deleterious. Heterozygosity was positively correlated with the impact of deleterious SNPs, suggesting a role of genetic diversity in mitigating their effects. The domesticated isolates exhibited a higher additive burden of deleterious SNPs (dSNPs) than the wild isolates, but a lower burden of indels and SVs. Moreover, the domesticated S. cerevisiae showed reduced rates of adaptive evolution relative to the wild S. cerevisiae. In summary, deleterious variants tend to be heterozygous, which may mitigate their harmful effects, but they also constrain breeding potential. Addressing deleterious alleles and minimizing the genetic load are crucial considerations for future S. cerevisiae breeding efforts.

14.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201328

RESUMEN

Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , Persona de Mediana Edad , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Anciano , Cromosomas Humanos Par 5/genética , Clasificación del Tumor , Cromosomas Humanos Par 13/genética , Perfilación de la Expresión Génica/métodos
15.
Proc Natl Acad Sci U S A ; 121(33): e2309455121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116125

RESUMEN

Linking genetic diversity to extinction is a common goal in genomic studies. Recently, a debate has arisen regarding the importance of genetic variation in conservation as some studies have failed to find associations between genome-wide genetic diversity and extinction risk. However, only rarely are genetic diversity and fitness measured together in the wild, and typically demographic history and environment are ignored. It is therefore difficult to infer whether a lack of an association is real or obscured by confounding factors. To address these shortcomings, we analyzed genetic data from 7,501 individuals with extinction data from 279 meadows and mortality of 1,742 larval nests in a butterfly metapopulation. We found a strong negative association between genetic diversity and extinction when considering only heterozygosity in models. However, this association disappeared when accounting for ecological covariates, suggesting a confounding between demography and genetics and a more complex role for heterozygosity in extinction risk. Modeling interactions between heterozygosity and demographic variables revealed that associations between extinction and heterozygosity were context-dependent. For example, extinction declined with increasing heterozygosity in large, but not currently small populations, although negative associations between heterozygosity, extinction, and mortality were detected in small populations with a recent history of decline. We conclude that low genetic diversity is an important predictor of extinction, predicting >25% increase in extinction beyond ecological factors in certain contexts. These results highlight that inferences about the importance of genetic diversity for population viability should not rely on genomic data alone but require investments in obtaining demographic and environmental data from natural populations.


Asunto(s)
Mariposas Diurnas , Extinción Biológica , Variación Genética , Mariposas Diurnas/genética , Animales , Heterocigoto , Ambiente , Dinámica Poblacional , Ecosistema , Conservación de los Recursos Naturales
16.
Ecol Evol ; 14(7): e11694, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026944

RESUMEN

Rails are a phenotypically diverse family of birds that includes 130 species and displays a wide distribution around the world. Here we present annotated genome assemblies for four rails from Aotearoa New Zealand: two native volant species, pukeko Porphyrio melanotus and mioweka Gallirallus philippensis, and two endemic flightless species takahe Porphyrio hochstetteri and weka Gallirallus australis. Using the sequence read data, heterozygosity was found to be lowest in the endemic flightless species and this probably reflects their relatively small populations. The quality checks and comparison with other rallid genomes showed that the new assemblies were of good quality. This study significantly increases the number of available rallid genomes and will enable future genomic studies on the evolution of this family.

17.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071438

RESUMEN

Coexistence of multiple strains of a pathogen in a host population can present significant challenges to vaccine development or treatment efficacy. Here we discuss a novel mechanism that can increase rates of long-lived strain polymorphism, rooted in the presence of social structure in a host population. We show that social preference of interaction, in conjunction with differences in immunity between host subgroups, can exert varying selection pressure on pathogen strains, creating a balancing mechanism that supports stable viral coexistence, independent of other known mechanisms. We use population genetic models to study rates of pathogen heterozygosity as a function of population size, host population composition, mutant strain fitness differences and host social preferences of interaction. We also show that even small periodic epochs of host population stratification can lead to elevated strain coexistence. These results are robust to varying social preferences of interaction, overall differences in strain fitnesses, and spatial heterogeneity in host population composition. Our results highlight the role of host population social stratification in increasing rates of pathogen strain diversity, with effects that should be considered when designing policies or treatments with a long-term view of curbing pathogen evolution.

18.
Cancers (Basel) ; 16(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39061189

RESUMEN

Double pathogenic mutations occurring in an individual are considered a rare event. The introduction of a multiple-gene panel at Hong Kong Hereditary Breast Cancer Family Registry has allowed the identification of pathogenic variants in multiple genes, providing more information on clinical management and surveillance to the proband and their family members. Breast cancer patients who are double heterozygous (DH) for different hereditary breast and ovarian cancer syndrome (HBCO)-related genes were identified from a cohort of 3649 Chinese patients. Nine patients (0.25%) were observed to have germline DH mutations in ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MSH6, PALB2, and TP53. Three probands were diagnosed with unilateral breast cancer, two patients were diagnosed with bilateral breast cancer, and four patients had multiple primary cancers. The median age for breast cancer diagnosis was an early age of 36 years. Chinese DH carriers did not show worse phenotypes or have a significantly downhill clinical presentation. However, seven out of nine (77.8%) of our DH carriers harbored a BRCA1 mutation, and four of them (44.4%) developed bilateral breast cancer, suggesting Chinese DH individuals may have a higher chance of having bilateral breast cancer than other populations (p = 0.0237).

19.
Exp Mol Pathol ; 139: 104920, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033589

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is reported to be amongst the cancers with the lowest survival rate at 5 years. In the present study we aimed to validate a targeted next-generation sequencing (tNGS) panel to use in clinical routine, investigating genes important for PDAC diagnostic, prognostic and potential theragnostic aspect. In this NGS panel we also designed target regions to inquire about loss of heterozygosity (LOH) of chromosome 18 that has been described to be possibly linked to a worse disease progression. Copy number alteration has also been explored for a subset of genes. The last two methods are not commonly used for routine diagnostic with tNGS panels and we investigated their possible contribution to better characterize PDAC. A series of 140 formalin-fixed paraffin-embedded (FFPE) PDAC samples from 140 patients was characterized using this panel. Ninety-two % of patients showed alterations in at least one of the investigated genes (most frequent KRAS, TP53, SMAD4, CDKN2A and RNF43). Regarding LOH evaluation, we were able to detect chr18 LOH starting at 20% cell tumor percentage. The presence of LOH on chr18 is associated with a worse disease- and metastasis-free survival, in uni- and multivariate analyses. The present study validates the use of a tNGS panel for PDAC characterization, also evaluating chr18 LOH status for prognostic stratification.

20.
Future Oncol ; : 1-14, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011875

RESUMEN

Aim: To determine the prevalence of deleterious mutations in BRCA1 and BRCA2 and in 13 genes involved in homologous recombination repair (HRR), the prevalence of genomic loss of heterozygosity and the allelic and hereditary status of BRCA1, BRCA2 and other HRR gene mutations in multiple solid tumor types. Patients & methods: This was a retrospective observational study of patients with an advanced/metastatic diagnosis in one of 15 solid tumor types, who were identified in a real-world clinico-genomic database. Results: Tumor tissue samples from 9457 patients were analyzed, among which 4.7% had known or suspected deleterious BRCA1/2 mutations. The prevalence (range) of mutations in HRR genes was 13.6% (2.4%-26.0%) and genomic loss of heterozygosity ≥16% was 20.6% (2.6-34.4%) across all tumor types. Conclusion: The prevalence of mutations varied significantly depending on the type of tumor.


The integrity of the human genome is maintained via multiple pathways of DNA repair, one of the most important of which is homologous recombination repair (HRR), which uses a sister chromatid as a template for high-fidelity restoration of altered DNA sequences. This study aimed to determine the prevalence of deleterious mutations, i.e., changes in the genetic code that interfere with proper cellular function, in the breast cancer genes BRCA1 and BRCA2 and in 13 other genes involved in HRR in various types of solid tumors in patients with advanced or metastatic cancer. The researchers found that 4.7% of tumor samples had BRCA1/2 mutations, 13.6% had mutations in any of the HRR genes and 20.6% had genomic loss of heterozygosity (gLOH) of at least 16% i.e., loss of sections of chromosomes affecting 16% or more of the genome. BRCA1/2 mutations were most common in ovarian cancer (13.1%), prostate cancer (9.3%), breast cancer (8.2%) and pancreatic cancer (4.9%). Prevalence for mutations in HRR genes ranges from 2.4 to 26.0% and gLOH ≥16% ranged from 2.6 to 34.4% depending on the tumor type. In conclusion, the prevalence of mutations in the BRCA1/2 genes, HRR genes and gLOH ≥16% varied widely across 15 tumor types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA