Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Methods Mol Biol ; 2850: 251-264, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363076

RESUMEN

Protein engineering is an established method for tailoring enzymatic reactivity. A commonly used method is directed evolution, where the mutagenesis and natural selection process is mimicked and accelerated in the laboratory. Here, we describe a reliable method for generating saturation mutagenesis libraries by Golden Gate cloning in a broad host range plasmid containing the pBBR1 replicon. The applicability is demonstrated by generating a mutant library of the iron nitrogenase gene cluster (anfHDGK) of Rhodobacter capsulatus, which is subsequently screened for the improved formation of molecular hydrogen.


Asunto(s)
Clonación Molecular , Biblioteca de Genes , Plásmidos , Plásmidos/genética , Clonación Molecular/métodos , Rhodobacter capsulatus/genética , Especificidad del Huésped/genética , Mutagénesis/genética , Mutagénesis Sitio-Dirigida/métodos , Familia de Multigenes , Evolución Molecular Dirigida/métodos
2.
Prev Vet Med ; 233: 106351, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353303

RESUMEN

Influenza is a disease that represents both a public health and agricultural risk with pandemic potential. Among the subtypes of influenza A virus, H3 influenza virus can infect many avian and mammalian species and is therefore a virus of interest to human and veterinary public health. The primary goal of this study was to train and validate classifiers for the identification of the most likely host species using the hemagglutinin gene segment of H3 viruses. A five-step process was implemented, which included training four machine learning classifiers, testing the classifiers on the validation dataset, and further exploration of the best-performing model on three additional datasets. The gradient boosting machine classifier showed the highest host-classification accuracy with a 98.0 % (95 % CI [97.01, 98.73]) correct classification rate on an independent validation dataset. The classifications were further analyzed using the predicted probability score which highlighted sequences of particular interest. These sequences were both correctly and incorrectly classified sequences that showed considerable predicted probability for multiple hosts. This showed the potential of using these classifiers for rapid sequence classification and highlighting sequences of interest. Additionally, the classifiers were tested on a separate swine dataset composed of H3N2 sequences from 1998 to 2003 from the United States of America, and a separate canine dataset composed of canine H3N2 sequences of avian origin. These two datasets were utilized to look at the applications of predicted probability and host convergence over time. Lastly, the classifiers were used on an independent dataset of environmental sequences to explore the host identification of environmental sequences. The results of these classifiers show the potential for machine learning to be used as a host identification technique for viruses of unknown origin on a species-specific level.

3.
Ecol Evol ; 14(10): e70257, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39385844

RESUMEN

Novel host plants are incorporated into the diets of phytophagous insects when females oviposit and juveniles feed and survive on them. A change in diet, however, can have morphological consequences. We recently found a population of the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae), a historical cactus specialist, living and feeding on Cirsium thistle. We also found adults breeding and males using their enlarged hind legs (i.e., weapons) in male-male combat on thistle. When we compared this thistle population with a population feeding on cactus, we found that both populations had similar body and weapon sizes as well as weapon composition. However, the population living on thistle had longer mouthparts than the population found on cactus, although this difference only occurred at larger body sizes. This difference in adult mouthpart size is likely a result of the juvenile rearing environment (i.e., thistle or cactus). However, genetic differences may also affect this trait. Our results provide some interesting avenues for future research (e.g., a reciprocal transplant experiment) in a species with a recent host range expansion.

4.
Parasit Vectors ; 17(1): 411, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363331

RESUMEN

BACKGROUND: The invasive mosquito Aedes albopictus is a major concern for human and animal health given its high potential to spread over large geographical distances, adapt to various habitats and food sources, and act as a vector for pathogens. It is crucial to understand how this species establishes ecological relationships at different locations, as it determines its role in transmission of diseases. METHODS: Based on published blood meal surveys, a meta-analysis was performed to investigate how host diversity changes along the process of invasion at a large scale. For 48 independent localities, the Shannon diversity index was calculated and was then assessed against several moderator variables describing invasion status, habitat type, methodology, survey year and the year of introduction for invasive populations. RESULTS: Diet diversity was higher in the invasive than in the native populations when the strong habitat effects were held constant. Furthermore, the year of introduction also had a significant role, as invasive populations that had been established earlier had wider diet diversity than more recent populations. CONCLUSIONS: Invasive Ae. albopictus has considerable ecological flexibility. The species' ability to adapt to various food sources goes hand in hand with its successful worldwide dispersion, which has strong implications for its role in pathogen transmission.


Asunto(s)
Aedes , Conducta Alimentaria , Especies Introducidas , Mosquitos Vectores , Aedes/fisiología , Aedes/clasificación , Animales , Mosquitos Vectores/fisiología , Ecosistema , Humanos , Dieta , Biodiversidad
5.
J Virol ; : e0036124, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404263

RESUMEN

Chloroviruses exhibit a close relationship with their hosts with the phenotypic aspect of their ability to form lytic plaques having primarily guided the taxonomy. However, with the isolation of viruses that are only able to complete their replication cycle in one strain of Chlorella variabilis, systematic challenges emerged. In this study, we described the genomic features of 53 new chlorovirus isolates and used them to elucidate part of the evolutionary history and taxonomy of this clade. Our analysis revealed new chloroviruses with the largest genomes to date (>400 kbp) and indicated that four genomic features are statistically different in the viruses that only infect the Syngen 2-3 strain of C. variabilis (OSy viruses). We found large regions of dissimilarity in the genomes of viruses PBCV-1 and OSy-NE5 when compared with the other genomes. These regions contained genes related to the interaction with the host cell machinery and viral capsid proteins, which provided insights into the evolution of the replicative and structural modules in these giant viruses. Phylogenetic analysis using hallmark genes of Nucleocytoviricota revealed that OSy-viruses evolved from the NC64A-viruses, possibly emerging as a result of the strict relationship with their hosts. Merging phylogenetics and nucleotide identity analyses, we propose strategies to demarcate viral species, resulting in seven new species of chloroviruses. Collectively, our results show how genomic data can be used as lines of evidence to demarcate viral species. Using the chloroviruses as a case study, we expect that similar initiatives will emerge using the basis exhibited here.IMPORTANCEChloroviruses are a group of giant viruses with long dsDNA genomes that infect different species of Chlorella-like green algae. They are host-specific, and some isolates can only replicate within a single strain of Chlorella variabilis. The genomics of these viruses is still poorly explored, and the characterization of new isolates provides important data on their genetic diversity and evolution. In this work, we describe 53 new chlorovirus genomes, including many isolated from alkaline lakes for the first time. Through comparative genomics and molecular phylogeny, we provide evidence of genomic gigantism in chloroviruses and show that a subset of viruses became highly specific for their hosts at a particular point in evolutionary history. We propose criteria to demarcate species of chloroviruses, paving the way for an update in the taxonomy of other groups of viruses. This study is a new and important piece in the complex puzzle of giant algal viruses.

6.
Plant Cell Environ ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39400920

RESUMEN

The recent invasion of the fall armyworm (FAW) into Asia not only has had a major impact on maize yield but is feared to also pose a risk to rice production. We hypothesized that the brown planthopper (BPH) may aggravate this risk based on a recently discovered mutualism between the planthopper and the rice striped stem borer. Here we show that BPH may indeed facilitate a shift of FAW to rice. FAW females were found to strongly prefer to oviposit on BPH-infested rice plants, which emitted significantly elevated levels of five volatile compounds. A synthetic mixture of these compounds had a potent stimulatory effect on ovipositing females. Although FAW caterpillars exhibited relatively poor growth on both uninfested and BPH-infested rice, a considerable portion completed their development on young plants. Moreover, FAW were found to readily pupate and survive in exceedingly moist soils typical for rice cultivation, further highlighting FAW's potential to switch to rice. We conclude that BPH, by changing the bouquet of volatiles emitted by rice plants, may greatly facilitate this switch. These findings, together with a current increase of nonflooded upland rice in Asia, warrant careful monitoring and specific control measures against FAW to safeguard Asian rice production.

7.
Plants (Basel) ; 13(19)2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39409680

RESUMEN

Tomato (Solanum lycopersicum L.), the second most important vegetable crop globally, faces a significant threat from various viral diseases. A newly emerging disease, characterised by distinctive shoestring symptoms on leaves and the development of unripe, small, and hard fruit, poses a serious challenge to tomato cultivation in India. An initial survey in an experimental field revealed more than 50% of the plants displayed symptoms of the shoestring disease, resulting in substantial reductions in fruit yield and quality. Transmission electron microscopy (TEM) and molecular analyses identified an isolate of the tomato mottle mosaic virus (ToMMV) in the affected plants. When the partially purified virus was mechanically inoculated into tomato cv. Pusa Ruby plants, it reproduced the characteristic shoestring symptoms, confirming its causal relationship with the disease. Notably, the present shoestring isolate of ToMMV (ToMMV-Tss) was found to induce similar shoestring symptoms in most of the major commercial tomato varieties when inoculated under controlled experimental conditions in the glasshouse, indicating its aggressive nature. Host range studies demonstrated that the ToMMV-Tss can infect several solanaceous species, while cucurbitaceous hosts remained unaffected. Moreover, the virus was found to be seed-transmissible, with a small percentage of seedlings from infected plants displaying symptoms. These findings underscore the significant impact of ToMMV on tomato production in India and emphasise the need for reliable diagnostic tools and effective management strategies to curb the spread and mitigate the impact of this virus on commercial tomato cultivation.

8.
Mycologia ; : 1-21, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374447

RESUMEN

This paper reports the South American rust fungi Puccinia modiolae and P. platyspora (Pucciniales/Uredinales) as new alien species of the European rust funga. Puccinia modiolae is presently known from Switzerland and Germany, P. platyspora from Switzerland, Germany, and France. The records of P. platyspora are the first ones from outside South America. The specimens were identified by teliospore characters and sequences of the nuclear ribosomal DNA (internal transcribed spacer 2 and domains D1-D2 of the nuclear ribosomal large subunit) and the mitochondrial CO3 (cytochrome c oxidase III) gene. Puccinia modiolae and P. platyspora have been recorded so far in Europe on members of the genera Alcea, predominantly on Alcea rosea, Althaea, and Malva of the Malvaceae, subfam. Malvoideae. Alcea rosea is host of both species and shared also with the common mallow rust, P. malvacearum, allowing for mixed infections. The plant is commonly grown as an ornamental and may play a major role for the spread of the alien Malvaceae rust fungi. It was observed for the first time that P. platyspora can produce spermogonia and aecidium-type aecia, suggesting phenotypic plasticity regarding the formation of spore states. The observed spermogonia mainly remained closed and did not liberate spermatia. They produced telio- and aeciospores besides spermatia in their cavity and eventually converted entirely into telia or, rarely, into aecidium-like sori. Small clusters of aeciospores and peridial cells were commonly found hidden in the telial plectenchyma, and well-developed aecidium-type aecia provided with a peridium developed rarely in the center of mature telia. Spermogonia belonging to group V type 4 were found in P. malvacearum, which is generally supposed to lack spermogonia. Some spermogonia produced only spermatia in their cavity; others formed spermatia and teliospores, and some eventually converted into telia.

9.
Microorganisms ; 12(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39338568

RESUMEN

To explore how microbial interactions within the rhizosphere influence the diversity and functional roles of bacterial communities, we isolated 21 bacterial strains from soil samples collected near Rocky Branch Creek on the University of South Carolina campus. Our findings revealed that a significant proportion of the isolated bacterial strains are lysogenic. Contrary to predictions of a narrow host range, most of the bacteriophages derived from these lysogenic bacteria demonstrated the ability to infect a broad range of bacterial strains. These results suggest that the bacterial community shares a complex phage community, creating an intricate web of interactions. This study enhances our understanding of the relationships between phages and their bacterial hosts in soil ecosystems, with implications for ecological balance and agricultural practices aimed at improving plant health through microbial management strategies.

10.
Viruses ; 16(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39339896

RESUMEN

Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.


Asunto(s)
Begomovirus , ADN Satélite , Virus Helper , Hemípteros , Insectos Vectores , Enfermedades de las Plantas , Animales , Begomovirus/genética , Hemípteros/virología , Insectos Vectores/virología , Virus Helper/genética , Virus Helper/fisiología , Enfermedades de las Plantas/virología , ADN Satélite/genética , Solanum lycopersicum/virología , Abelmoschus/virología , Virus Satélites/genética
11.
ISME Commun ; 4(1): ycae109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39296779

RESUMEN

Unicellular green picophytoplankton from the Mamiellales order are pervasive in marine ecosystems and susceptible to infections by prasinoviruses, large double-stranded DNA viruses within the Nucleocytoviricota phylum. We developed a double-stranded DNA virus enrichment and shotgun sequencing method, and successfully assembled 80 prasinovirus genomes from 43 samples in the South China Sea. Our research delivered the first direct estimation of 94% accuracy in correlating genome similarity to host range. Stirkingly, our analyses uncovered unexpected host-switching across diverse algal lineages, challenging the existing paradigms of host-virus co-speciation and revealing the dynamic nature of viral evolution. We also detected six instances of horizontal gene transfer between prasinoviruses and their hosts, including a novel alternative oxidase. Additionally, diversifying selection on a major capsid protein suggests an ongoing co-evolutionary arms race. These insights not only expand our understanding of prasinovirus genomic diversity but also highlight the intricate evolutionary mechanisms driving their ecological success and shaping broader virus-host interactions in marine environments.

12.
ISME Commun ; 4(1): ycae105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39296778

RESUMEN

Bacteriophages (phages) are increasingly considered for both treatment and early detection of bacterial pathogens given their specificity and rapid infection kinetics. Here, we exploit an engineered phage expressing nanoluciferase to detect signals associated with Pseudomonas aeruginosa lysis spanning single cells to populations. Using several P. aeruginosa strains we found that the latent period, burst size, fraction of infected cells, and efficiency of plating inferred from fluorescent light intensity signals were consistent with inferences from conventional population assays. Notably, imaging-based traits were obtained in minutes to hours in contrast to the use of overnight plaques, which opens the possibility to study infection dynamics in spatial and/or temporal contexts where plaque development is infeasible. These findings support the use of engineered phages to study infection kinetics of virus-cell interactions in complex environments and potentially accelerate the determination of viral host range in therapeutically relevant contexts.

13.
New Phytol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327796

RESUMEN

Host plants provide resources critical to viruses and the spatial structuring of plant communities affects the niches available for colonisation and disease emergence. However, large gaps remain in the understanding of mechanisms that govern plant-virus disease ecology across heterogeneous plant assemblages. We combine high-throughput sequencing, network, and metacommunity approaches to test whether habitat heterogeneity in plant community composition corresponded with virus resource utilisation traits of transmission mode and host range. A majority of viruses exhibited habitat specificity, with communities connected by key generalist viruses and potential host reservoirs. There was an association between habitat heterogeneity and virus community structuring, and between virus community structuring and resource utilisation traits of host range and transmission. The relationship between virus species distributions and virus trait responses to habitat heterogeneity was scale-dependent, being stronger at finer (site) than larger (habitat) spatial scales. Results indicate that habitat heterogeneity has a part in plant virus community assembly, and virus community structuring corresponds to virus trait responses that vary with the scale of observation. Distinctions in virus communities caused by plant resource compartmentalisation can be used to track trait responses of viruses to hosts important in forecasting disease emergence.

14.
mSystems ; : e0085024, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248470

RESUMEN

Phage therapy appears to be a promising approach to tackle multidrug-resistant bacteria, including staphylococci. However, most anti-staphylococcal phages have been characterized in Staphylococcus aureus, while a limited number of studies investigated phage activity against S. epidermidis. We studied the potential of phage training to extend the host range of two types of anti-S. aureus phages against S. epidermidis isolates. The Appelmans protocol was applied to a mixture of Kayvirus and a mixture of Silviavirus phages repeatedly exposed to seven S. epidermidis strains representative of nosocomial-associated sequence types (ST), including the world-wide disseminated ST2. We observed increased activity only for the Kayvirus mixture against two of these strains (ST2 or ST35). Phage subpopulations isolated from the training mixture using these two strains (five/strain) exhibited different evolved phenotypes, active only against their isolation strain or strains of the same ST. Of note, 16/47 ST2 strains were susceptible to one of the groups of trained phages. A comparative genomic analysis of ancestral and trained phage genomes, conducted to identify potential bacterial determinants of such specific activity, found numerous recombination events between two of the three ancestors. However, a small number of trained phage genes had nucleotide sequence modifications impacting the corresponding protein compared to ancestral phages, two to four of them per phage genome being specific of each group of phage subpopulations exhibiting different host range. The results suggest that anti-S. aureus phages can be adapted to S. epidermidis isolates but with inter- and intra-ST specificity.ImportanceS. epidermidis is increasingly recognized as a threat for public health. Its clinical importance is notably related to multidrug resistance. Phage therapy is one of the most promising alternative therapeutic strategies to antibiotics. Nonetheless, only very few phages active against this bacterial species have been described. In the present study, we showed that phage training can be used to extend the host range of polyvalent Kayvirus phages within the Staphylococcus genera to include S. epidermidis species. In the context of rapid development of phage therapy, in vitro forced adaptation of previously characterized phages could be an appealing alternative to fastidious repeated isolation of new phages to improve the therapeutic potential of a phage collection.

15.
Microbiol Spectr ; 12(10): e0025424, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39194291

RESUMEN

Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp., including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage-host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide.IMPORTANCEThe emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage-host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage-host interactions to design personalized treatments against Klebsiella spp.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella pneumoniae , Terapia de Fagos , Klebsiella pneumoniae/virología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/terapia , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Bacteriófagos/clasificación , Humanos , Terapia de Fagos/métodos , Especificidad del Huésped , Control de Infecciones/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Serogrupo , Cápsulas Bacterianas/metabolismo , Infección Hospitalaria/microbiología
16.
Arch Microbiol ; 206(9): 379, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143367

RESUMEN

Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.


Asunto(s)
Antibacterianos , Bacteriófagos , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Terapia de Fagos , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Genoma Viral , Humanos , Pruebas de Sensibilidad Microbiana
17.
Front Microbiol ; 15: 1387830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211316

RESUMEN

Salmonella enterica is a foodborne pathogen associated with both typhoid and non-typhoid illness in humans and animals. This problem is further exacerbated by the emergence of antibiotic-resistant strains of Salmonella enterica. Therefore, to meet public health and safety, there is a need for an alternative strategy to tackle antibiotic-resistant bacteria. Bacteriophages or (bacterial viruses), due to their specificity, self-dosing, and antibiofilm activity, serve as a better approach to fighting against drug-resistant bacteria. In the current study, a broad-host range lytic phage phiSalP219 was isolated against multidrug-resistant Salmonella enterica serotypes Paratyphi from a pond water sample. Salmonella phage phiSalP219 was able to lyse 28/30 tested strains of Salmonella enterica. Salmonella phage phiSalP219 exhibits activity in acidic environments (pH3) and high temperatures (70°C). Electron microscopy and genome analysis revealed that phage phiSalP219 is a member of class Caudoviricetes. The genome of Salmonella phage phiSalP219 is 146Kb in size with 44.5% GC content. A total of 250 Coding Sequence (CDS) and 25 tRNAs were predicted in its genome. Predicted open reading frames (ORFs) were divided into five groups based on their annotation results: (1) nucleotide metabolism, (2) DNA replication and transcription, (3) structural proteins, (4) lysis protein, and (5) other proteins. The absence of lysogeny-related genes in their genome indicates that Salmonella phage phiSalP219 is lytic in nature. Phage phiSalP219 was also found to be microbiologically safe (due to the absence of toxin or virulence-related genes) in the control of Salmonella enterica serovar Typhimurium infections in the ready-to-eat meat and also able to eradicate biofilm formed by the same bacterium on the borosilicate glass surface.

18.
mSystems ; 9(9): e0084924, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39166875

RESUMEN

Engineering identical genetic circuits into different species typically results in large differences in performance due to the unique cellular environmental context of each host, a phenomenon known as the "chassis-effect" or "context-dependency". A better understanding of how genomic and physiological contexts underpin the chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we combined a pangenomic-based gene expression analysis with quantitative measurements of performance from an engineered genetic inverter device to uncover how genome structure and function relate to the observed chassis-effect across six closely related Stutzerimonas hosts. Our results reveal that genome architecture underpins divergent responses between our chosen non-model bacterial hosts to the engineered device. Specifically, differential expression of the core genome, gene clusters shared between all hosts, was found to be the main source of significant concordance to the observed differential genetic device performance, whereas specialty genes from respective accessory genomes were not significant. A data-driven investigation revealed that genes involved in denitrification and components of trans-membrane transporter proteins were among the most differentially expressed gene clusters between hosts in response to the genetic device. Our results show that the chassis-effect can be traced along differences among the most conserved genome-encoded functions and that these differences create a unique biodesign space among closely related species.IMPORTANCEContemporary synthetic biology endeavors often default to a handful of model organisms to host their engineered systems. Model organisms such as Escherichia coli serve as attractive hosts due to their tractability but do not necessarily provide the ideal environment to optimize performance. As more novel microbes are domesticated for use as biotechnology platforms, synthetic biologists are urged to explore the chassis-design space to optimize their systems and deliver on the promises of synthetic biology. The consequences of the chassis-effect will therefore only become more relevant as the field of biodesign grows. In our work, we demonstrate that the performance of a genetic device is highly dependent on the host environment it operates within, promoting the notion that the chassis can be considered a design variable to tune circuit function. Importantly, our results unveil that the chassis-effect can be traced along similarities in genome architecture, specifically the shared core genome. Our study advocates for the exploration of the chassis-design space and is a step forward to empowering synthetic biologists with knowledge for more efficient exploration of the chassis-design space to enable the next generation of broad-host-range synthetic biology.


Asunto(s)
Genoma Bacteriano , Genoma Bacteriano/genética , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Biología Sintética/métodos , Familia de Multigenes/genética , Ingeniería Genética/métodos , Redes Reguladoras de Genes , Regulación Bacteriana de la Expresión Génica , Genómica
19.
J Chem Ecol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095554

RESUMEN

Parasitoid biological control agents rely heavily on olfaction to locate their hosts. Chemical cues associated with hosts and non-hosts are known to influence the expression of host preferences and host-specificity. A better understanding of how and why parasitoids attack some species and not others, based on volatile organic compounds associated with potential hosts, can provide key information on the parasitoid's host preferences, which could be applied to pre-release risk assessments for classical biological control agents. Electrophysiological techniques such as electroantennography (EAG) and GC-EAD (gas chromatography coupled with electroantennographic detection) are widely used to identify bioactive semiochemicals. But the application of these techniques to understanding how chemical ecological cues mediate parasitoid host specificity has not been as thoroughly explored. We conducted GC-EAD and EAG studies to identify olfactory-active compounds associated with adult females of nine stink bug species from Aotearoa/New Zealand on the antennae of three closely related parasitoid species: Trissolcus japonicus Ashmead, a pre-emptively (= proactively) approved biocontrol agent against brown marmorated stink bug; T. basalis (Wollaston), a biocontrol agent introduced against Nezara viridula L. in 1949; and T. oenone Johnson, a native Australasian pentatomid parasitoid. Eight compounds associated with stink bugs elicited antennal responses from all three parasitoids, and we were able to identify seven of these. (E)-2-hexenal, (E)-4-oxo-2-hexenal, (E)-2-octenal and (E)-2-decenal generally elicited stronger responses in the three parasitoids, while n-tridecane, n-dodecane, and (E)-2-decenyl acetate elicited weaker responses. We discuss how and why the results from electrophysiological experiments can be applied to non-target risk assessments within biological control programmes.

20.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059847

RESUMEN

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Asunto(s)
Coffea , Cordyceps , Endófitos , Filogenia , Endófitos/clasificación , Endófitos/aislamiento & purificación , Endófitos/genética , Endófitos/fisiología , Cordyceps/genética , Cordyceps/clasificación , Coffea/microbiología , Coffea/parasitología , Animales , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Etiopía , ADN de Hongos/genética , ADN de Hongos/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , Tallos de la Planta/microbiología , Tallos de la Planta/parasitología , Análisis de Secuencia de ADN , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA