Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
1.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125044

RESUMEN

Eleutherococcus divaricatus (Siebold and Zucc.) S. Y. Hu. has been used in Traditional Chinese Medicine (TCM) due to its anticancer, immunostimulant, and anti-inflammatory activities. However, its mechanism of action and chemical composition are still insufficiently understood and require more advanced research, especially for cases in which anti-inflammatory properties are beneficial. The aim of this study was to evaluate the impact of E. divaricatus root extracts and fractions on proinflammatory serum hyaluronidase and tyrosinase in children diagnosed with acute lymphoblastic leukemia. Antioxidant and anti-melanoma activities were also examined and correlated with metabolomic data. For the first time, we discovered that the ethyl acetate fraction significantly inhibits hyaluronidase activity, with mean group values of 55.82% and 63.8% for aescin used as a control. However, interestingly, the fraction showed no activity against human tyrosinase, and in A375 melanoma cells treated with a doxorubicin fraction, doxorubicin activity decreased. This fraction exhibited the most potent antioxidant activity, which can be attributed to high contents of polyphenols, especially caffeic acid (24 mg/g). The findings suggest an important role of the ethyl acetate fraction in hyaluronidase inhibition, which may additionally indicate its anti-inflammatory property. The results suggest that this fraction can be used in inflammatory-related diseases, although with precautions in cases of patients undergoing chemotherapy.


Asunto(s)
Acetatos , Antioxidantes , Eleutherococcus , Hialuronoglucosaminidasa , Melanoma , Monofenol Monooxigenasa , Extractos Vegetales , Raíces de Plantas , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Raíces de Plantas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Acetatos/química , Eleutherococcus/química , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
2.
Clin Cosmet Investig Dermatol ; 17: 1815-1822, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139846

RESUMEN

Introduction: Epidermoid cysts (E.C.s), also known as sebaceous cysts, are benign asymptomatic subepidermal nodules filled with keratin material. These cysts originate from the follicular infundibulum, which when obstructed by keratin, results in cyst formation. Conventionally, E.C.s have been managed surgically with a high success rate and minimal complications. In this report, we present the successful resolution of an E.C. using a minimally invasive technique involving the intralesional injection of recombinant hydrolytic enzymes like hyaluronidase, collagenase, and lipase. Case Presentation: A 44-year-old woman with no significant medical history presented to the clinic with a mass on her right cheek that had been evolving for over 10 years. Skin and soft tissue ultrasound confirmed the presence of an E.C. of 9.3×6.6 × 9.3 mm. Owing to the size and location of the cyst, a decision was made to infiltrate the lesion with recombinant enzymes. Remarkably, significant clinical improvement was observed on Day 21, and complete dissolution of the E.C. occurred 40 days after the initial intervention. Importantly, no recurrences were observed during the 4-year follow-up period. Conclusion: Intralesional administration of hydrolytic enzymes represents an innovative technique in the management of E.C.s. However, further controlled studies are required to determine the efficacy and safety of this procedure.

3.
Cureus ; 16(7): e63969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39105002

RESUMEN

The two cases discussed in this report investigate the efficacy and safety of a novel injectable therapy for treating neck wrinkles and skin laxity, utilizing a combination of hyperdiluted calcium hydroxylapatite (CaHA), platelet-rich plasma (PRP), and hyaluronidase. Two patients presenting with moderate neck wrinkles and laxity underwent treatment and were evaluated several months later. The combined therapy demonstrated improvements in skin texture and laxity following a single treatment. The rationale behind incorporating PRP and hyaluronidase was their potential to amplify the regenerative effects of CaHA. PRP contains growth factors that stimulate collagen production and tissue regeneration while hyaluronidase facilitates the breakdown of hyaluronic acid, promoting better diffusion and more even product dispersion. The findings from these cases provide emerging preliminary evidence supporting the safety and efficacy of this innovative combination therapy for addressing neck wrinkles and laxity. This is the first documented instance of skin priming CaHA with hyaluronidase and PRP. Future investigations are warranted to explore the application of this treatment for other anatomical regions and to delineate the role of each injected component.

4.
Biomed Pharmacother ; 178: 117261, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106708

RESUMEN

BACKGROUND: Long-term anti-angiogenesis leads to pruned vasculature, densely deposited extracellular matrix (ECM), and consequently reduced chemotherapy delivery in esophagogastric cancer (EGC). To address this issue, we evaluated the efficacy of adding a hyaluronidase or a NO-donor to the regimen of chemotherapy and anti-angiogenic drugs. METHODS: A patient-derived EGC xenograft model was developed. Grafted mice were randomly assigned to four experimental groups and one control group. The experimental groups received DC101, a murine angiogenesis inhibitor, and nab-paclitaxel (NPTX), with the addition of hyaluronidase (PEGPH20), or NO-donor (nitroglycerine, NTG), or their combination, respectively. We compared tumor growth during 17 days of treatment. We performed immunohistochemistry for ECM components hyaluronan (HA) and collagen, CD31 for endothelial cells, and γH2AX for DNA damage. The positively stained areas were quantified, and vessel diameters were measured using QuPath software. RESULTS: Prolonged DC101 treatment induced deposition of HA (p<0.01) and collagen (p<0.01). HA was effectively degraded by PEGPH20 (p<0.001), but not by NTG as expected. Both PEGPH20 (p<0.05) and NTG (p<0.01) dilated vessels collapsed in response to long-term DC101 treatment. However, only PEGPH20 (rather than NTG) was found to significantly inhibit tumor growth (p<0.05) in combination with NPTX and DC101. CONCLUSIONS: These findings suggest that the mechanical barrier of HA is the major reason responsible for the resistance developed during prolonged anti-angiogenesis in EGC. Incorporating PEGPH20 into the existing treatment regimen is promising to improve outcomes for patients with EGC.

5.
J Control Release ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089505

RESUMEN

Hyaluronan (HA) is a glycosaminoglycan that forms a gel-like barrier in the subcutaneous (SC) space, limiting bulk fluid flow and the dispersion of SC-administered therapeutics. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates the rapid delivery of co-administered therapeutics by depolymerizing HA in the SC space. Administration of rHuPH20 can induce the formation of anti-rHuPH20 antibodies, or anti-drug antibodies (ADAs), with the potential to bind endogenous PH20 hyaluronidase in the adult testes and epididymis. Using a variety of relevant animal models and multiple dose regimens of rHuPH20 across the full spectrum of animal development, we demonstrated that rHuPH20 administration resulted in the formation of ADAs. Although these ADAs can bind both the recombinant rHuPH20 enzyme and recombinant versions of animal model-specific hyaluronidases, they had no impact on fertility parameters (as measured by sperm concentration and motility, litter size, and litter viability) or fetal development. We present the result of our nonclinical studies in order of the developmental lifecycle, beginning with adults. Toxicology studies that extend beyond the standard package are also presented. These studies demonstrate the favorable safety profile of rHuPH20 and ADAs in nonclinical models. Additionally, we identified substantial safety margins for therapeutically relevant doses of rHuPH20.

6.
Aesthetic Plast Surg ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160403

RESUMEN

BACKGROUND: Hyaluronic acid (HA) injection in the auricular base is one of the most popular and non-surgical cosmetic procedures for correcting lying ears and optimizing the facial profile because of its minimal invasiveness, immediate effect and safety (Li et al. in Aesthet Surg J 44: 746-75, 2024). But we have recently discovered that this treatment may lead to a new and rare complication called peripheral facial paralysis that has never been reported before. Until now, the etiology, clinical traits, treatment strategies, outcomes and possible reversibility have not been characterized. METHODS: In the present study, we enrolled 4 patients with peripheral facial paralysis after subcutaneous postauricular HA filler injection. Preoperative digital subtraction angiography revealed a vascular embolism. Then, the patients underwent super-selective facial arterial thrombolytic therapy via hyaluronidase and papaverine injections. Simultaneously, general symptomatic treatment and nutritional therapy were performed. RESULTS: The patients were relieved of their clinical symptoms and the significant improvement was observed in terms of motor function in her left facial areas after treatment. The auricular skin necrosis of all patients was restored to near normal appearance. CONCLUSION: Our results indicate that super-selective facial arterial thrombolytic therapy is feasible for patients with peripheral facial paralysis induced by HA embolism. It was also beneficial in the recovery from skin necrosis. The therapy was shown to be worthy of clinical application. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

7.
Pathol Res Pract ; 260: 155434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991455

RESUMEN

Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Ácido Hialurónico , Hialuronoglucosaminidasa , Humanos , Hialuronoglucosaminidasa/metabolismo , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/enzimología , Ácido Hialurónico/metabolismo , Persona de Mediana Edad , Adulto , Anciano , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/análisis , Línea Celular Tumoral , Moléculas de Adhesión Celular/metabolismo , Recurrencia Local de Neoplasia/patología
8.
Microb Cell Fact ; 23(1): 200, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026213

RESUMEN

Hyaluronidase (hyase) is an endoglycosidase enzyme that degrades hyaluronic acid (HA) and is mostly known to be found in the extracellular matrix of connective tissues. In the current study, eleven bacteria isolates and one actinomycete were isolated from a roaster comb and screened for hyase production. Seven isolates were positive for hyase, and the most potent isolate was selected based on the diameter of the transparent zone. Based on the morphological, physiological, and 16 S rRNA characteristics, the most potent isolate was identified as Brucella intermedia MEFS with accession number OR794010. The environmental conditions supporting the maximum production of hyase were optimized to be incubation at 30 ºC for 48 h and pH 7, which caused a 1.17-fold increase in hyase production with an activity of 84 U/mL. Hyase was purified using a standard protocol, including precipitation with ammonium sulphate, DEAE as ion exchange chromatography, and size exclusion chromatography using Sephacryle S100, with a specific activity of 9.3-fold compared with the crude enzyme. The results revealed that the molecular weight of hyase was 65 KDa, and the optimum conditions for hyase activity were at pH 7.0 and 37 °C for 30 min. The purified hyase showed potent anticancer activities against colon, lung, skin, and breast cancer cell lines with low toxicity against normal somatic cells. The cell viability of hyase-treated cancer cells was found to be in a dose dependent manner. Hyase also controlled the growth factor-induced cell cycle progression of breast cancer cells and caused relative changes in angiogenesis-related genes as well as suppressed many pro-inflammatory proteins in MDA cells compared with 5-fluorouracil, indicating the significant role of hyase as an anticancer agent. In addition, hyase recorded the highest DPPH scavenging activity of 65.49% and total antioxidant activity of 71.84% at a concentration of 200 µg/mL.


Asunto(s)
Antineoplásicos , Antioxidantes , Hialuronoglucosaminidasa , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/antagonistas & inhibidores , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/química , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/química
9.
Nat Prod Res ; : 1-18, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082374

RESUMEN

Misuse of antibiotics led to the world wide spread of antimicrobial resistance threatening human lives. The notable resistance of bacterial cells to antibiotics and immune system is the difficulty associated with biofilm-linked illnesses. Natural products from plant origin with antibiofilm activity could provide more therapeutic activity with fewer adverse effects. Carissa L. is a potential drug candidate that can be considered as an agro-food waste sustainable virulence inhibitor source. This mini-review sheds light on recent studies dealing with the anti-virulence potential of Carissa species and its different mechanisms of action. The traced articles revealed that Carissa species exhibited potent antibiofilm, anti-quorum sensing, hyaluronidase inhibitory and anti-adhesion potentials, in addition to violacein, and swimming motility inhibition activities. Ursolic acid, oleanolic acid, and methyl oleanate are the main phytoconstituents of Carissa with claimed virulence inhibitory potentials. Carissa species are safe, valuable, and effective anti-virulence drugs suppressing pathogenicity when compared to conventional antibiotics.

10.
Int J Nanomedicine ; 19: 7493-7508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081895

RESUMEN

Introduction: Lung cancer is the most common cancer worldwide, among which non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Chemotherapy, a mainstay modality for NSCLC, has demonstrated restricted effectiveness due to the emergence of chemo-resistance and systemic side effects. Studies have indicated that combining chemotherapy with phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), can enhance efficacy of therapy. In this work, an aminated mesoporous graphene oxide (rPGO)-protoporphyrin IX (PPIX)-hyaluronic acid (HA)@Osimertinib (AZD) nanodrug delivery system (rPPH@AZD) was successfully developed for combined chemotherapy/phototherapy for NSCLC. Methods: A pH/hyaluronidase-responsive nanodrug delivery system (rPPH@AZD) was prepared using mesoporous graphene oxide. Its morphology, elemental composition, surface functional groups, optical properties, in vitro drug release ability, photothermal properties, reactive oxygen species production, cellular uptake and cell viability were evaluated. In addition, the in vivo therapeutic effect, biocompatibility, and imaging capabilities of rPPH@AZD were verified by a tumor-bearing mouse model. Results: Aminated mesoporous graphene oxide (rPGO) plays a role as a drug delivery vehicle owing to its large specific surface area and ease of surface functionalization. rPGO exhibits excellent photothermal conversion properties under laser irradiation, while PPIX acts as a photosensitizer to generate singlet oxygen. AZD acts as a small molecule targeted drug in chemotherapy. In essence, rPPH@AZD shows excellent photothermal and fluorescence imaging effects in tumor-bearing mice. More importantly, in vitro and in vivo results indicate that rPPH@AZD can achieve hyaluronidase/pH dual response as well as combined chemotherapy/PTT/PDT anti-NSCLC treatment. Conclusion: The newly prepared rPPH@AZD can serve as a promising pH/hyaluronidase-responsive nanodrug delivery system that integrates photothermal/fluorescence imaging and chemo/photo combined therapy for efficient therapy against NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Grafito , Ácido Hialurónico , Neoplasias Pulmonares , Nanocompuestos , Fotoquimioterapia , Grafito/química , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Animales , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Ratones , Nanocompuestos/química , Ácido Hialurónico/química , Fotoquimioterapia/métodos , Línea Celular Tumoral , Protoporfirinas/química , Protoporfirinas/farmacocinética , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Terapia Combinada , Liberación de Fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Ratones Desnudos , Porosidad , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo
11.
Food Chem ; 460(Pt 1): 140414, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084103

RESUMEN

Opuntia plants are abundant but still underexplored edible resources of the Algerian region. This work chemically characterizes extracts of different parts of the fruit of the commercial Opuntia ficus-indica (L.) Mill. and the wild Opuntia stricta (Haw.) Haw. growing in Bejaia, and evaluates their anti-inflammatory potential through different cell and cell-free bioassays. The LC-ESI-UHR-QqTOF-MS/MS analysis enabled the identification of 18 compounds, with azelaic acid and 1-O-vanilloyl-ß-d-glucose reported here for the first time. Aqueous extracts of seeds were the most effective in scavenging superoxide anion radical (IC50 = 111.08 µg/mL) and presented the best anti-inflammatory potential in LPS-stimulated macrophages (IC50 = 206.30 µg/mL). The pulp of O. stricta suggested potential for addressing post-inflammatory hyperpigmentation, with piscidic and eucomic acids predicted with the strongest binding affinity towards tyrosinase, exhibiting higher scoring values than the reference inhibitor kojic acid. This pioneer study brings valuable perspectives for the pharmacological, nutritional and economic valorization of the wild O. stricta for functional foods.

12.
Bull Exp Biol Med ; 177(1): 147-154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38963598

RESUMEN

Hyaluronidase increases tissue permeability and diffusion of the extracellular fluid by cleaving hyaluronan, the primary component of the extracellular matrix. Hyaluronidase pegylation (Hyal-PEG) decreases its clearance and enhances biodistribution. The pro- and anticancer activity of Hyal-PEG and a combination of Hyal-PEG with doxorubicin were studied in vitro (morphological analysis of rat glioblastoma 101.8 spheroids) and in vivo (by the survival time of rats after intracerebral transplantation of the tumor and morphological analysis). In the presence of doxorubicin and Hyal-PEG in the culture medium in vitro, spheroids lost their ability to adhere to the substrate and disintegrate into individual cells. Intracerebral transplantation of the tumor tissue with Hyal-PEG did not accelerate glioblastoma growth. The mean survival time for animals receiving transplantation of the tumor alone and in combination with Hyal-PEG was 13 and 20 days, respectively. In one rat with transplanted tumor and Hyal-PEG, this parameter increased by 53%. The survival time of rats receiving systemic therapy with doxorubicin and Hyal-PEG significantly increased (p=0.003). Antitumor effect of therapeutic doses of doxorubicin combined with Hyal-PEG was demonstrated on the model of rat glioblastoma 101.8 in vitro. Hyal-PEG inhibited adhesion of tumor cells, but did not cause their death. Transplantation of Hyal-PEG-treated tumor did not reduce animal survival time. Systemic administration of therapeutic doses of doxorubicin with Hyal-PEG increased survival time of rats with glioblastoma 101.8.


Asunto(s)
Neoplasias Encefálicas , Doxorrubicina , Glioblastoma , Hialuronoglucosaminidasa , Polietilenglicoles , Animales , Doxorrubicina/farmacología , Hialuronoglucosaminidasa/metabolismo , Ratas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Masculino , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos
13.
Front Endocrinol (Lausanne) ; 15: 1346082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982989

RESUMEN

Introduction: Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods: Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results: In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion: Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.


Asunto(s)
Presión Sanguínea , Hialuronoglucosaminidasa , Hipertensión , Humanos , Masculino , Hialuronoglucosaminidasa/orina , Hialuronoglucosaminidasa/metabolismo , Hipertensión/metabolismo , Hipertensión/orina , Persona de Mediana Edad , Adulto , Acuaporina 2/orina , Acuaporina 2/metabolismo , Arginina Vasopresina/metabolismo , Vasopresinas/metabolismo , Glicopéptidos
14.
Aesthetic Plast Surg ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971925

RESUMEN

INTRODUCTION: The rising use of soft tissue fillers for aesthetic procedures has seen an increase in complications, including vascular occlusions and neurological symptoms that resemble stroke. This study synthesizes information on central nervous system (CNS) complications post-filler injections and evaluates the effectiveness of hyaluronidase (HYAL) treatment. METHODS: A thorough search of multiple databases, including PubMed, EMBASE, Scopus, Web of Science, Google Scholar, and Cochrane, focused on publications from January 2014 to January 2024. Criteria for inclusion covered reviews and case reports that documented CNS complications related to soft tissue fillers. Advanced statistical and computational techniques, including logistic regression, machine learning, and Bayesian analysis, were utilized to dissect the factors influencing therapeutic outcomes. RESULTS: The analysis integrated findings from 20 reviews and systematic analyses, with 379 cases reported since 2018. Hyaluronic acid (HA) was the most commonly used filler, particularly in nasal region injections. The average age of patients was 38, with a notable increase in case reports in 2020. Initial presentation data revealed that 60.9% of patients experienced no light perception, while ptosis and ophthalmoplegia were present in 54.3 and 42.7% of cases, respectively. The statistical and machine learning analyses did not establish a significant linkage between the HYAL dosage and patient recovery; however, the injection site emerged as a critical determinant. CONCLUSION: The study concludes that HYAL treatment, while vital for managing complications, varies in effectiveness based on the injection site and the timing of administration. The non-Newtonian characteristics of HA fillers may also affect the incidence of complications. The findings advocate for tailored treatment strategies incorporating individual patient variables, emphasizing prompt and precise intervention to mitigate the adverse effects of soft tissue fillers. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

15.
Artículo en Inglés | MEDLINE | ID: mdl-39038785

RESUMEN

A 49-year-old female with no pre-morbidities comes in with sudden, painless loss of vision in the left eye (OS) after a facial hyaluronic acid (HA) injection for aesthetic purposes one hour ago. Visual acuity was no light perception (NLP). OS examination revealed a mid-non-reactive mydriasis and complete ophthalmoplegia. Fundus examination of the OS suggested central retinal artery occlusion (CRAO). Systemic evaluation was normal. Given this diagnosis, ocular massage, anterior chamber paracentesis, anticoagulation, systemic antibiotherapy, and subcutaneous hyaluronidase around the injection sites and peribulbar region were performed. Despite these interventions, the patient did not regain vision, exhibiting signs of anterior and posterior ocular ischemia. Subsequently, she developed phthisis bulbi, necessitating evisceration. The management of this complication should be prompt, if possible, to mitigate its dire consequences.

16.
Cells ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056785

RESUMEN

Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.


Asunto(s)
Ácido Hialurónico , Hialuronoglucosaminidasa , Humanos , Ácido Hialurónico/metabolismo , Animales , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/genética
17.
Arch Biochem Biophys ; 759: 110098, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009271

RESUMEN

Mouse transmembrane protein 2 (mTMEM2) has been identified as a hyaluronidase, which has extracellularly G8 and GG domains and PbH1 repeats; however, our previously study showed that human TMEM2 (hTMEM2) is not a catalytic hyaluronidase due to the absence of the critical amino acid residues (His248/Ala303) in the GG domain. Naked mole-rats (NMRs) accumulate abundant high-molecular weight hyaluronan (HA) in their tissues, suggesting decreased HA degradation. Therefore, we aimed to evaluate the HA-degrading activity of NMR TMEM2 (nmrTMEM2) and compare it with those of mTMEM2 and hTMEM2. The amino acid residues of nmrTMEM2 (Asn247/Val302) are similar to Asn248/Phe303 of hTMEM2, and nmrTMEM2-expressing HEK293T cells showed negligible activity. We confirmed the significance of these amino acid residues using an inactive chimeric TMEM2 with the human GG domain, which acquired catalytic activity when Asn248/Phe303 was substituted with His248/Ala303. Semi-quantitative comparison of the activities of the membrane-fractions derived from m/h/nmrTMEM2-expressing HEK293T cells revealed that at least 20- and 14-fold higher amounts of nmr/hTMEM2 were required to degrade HA to the same extent as by mTMEM2. Thus, unlike mTMEM2, nmrTMEM2 is not a physiological hyaluronidase. The inability of nmrTMEM2 to degrade HA might partially account for the high-molecular-weight HA accumulation in NMR tissues.


Asunto(s)
Ácido Hialurónico , Hialuronoglucosaminidasa , Proteínas de la Membrana , Ratas Topo , Humanos , Ácido Hialurónico/metabolismo , Animales , Células HEK293 , Ratas Topo/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/química , Secuencia de Aminoácidos , Ratones , Dominios Proteicos
18.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000476

RESUMEN

Hyaluronidase possesses the capacity to degrade high-molecular-weight hyaluronic acid into smaller fragments, subsequently initiating a cascade of inflammatory responses and activating dendritic cells. In cases of bacterial infections, substantial quantities of HAase are generated, potentially leading to severe conditions such as cellulitis. Inhibiting hyaluronidase activity may offer anti-inflammatory benefits. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, has anti-inflammatory properties. However, its effects on skin inflammation are not well understood. This study screened and evaluated the active components of S. miltiorrhiza that inhibit skin inflammation, using ligand fishing, enzyme activity assays, drug combination analysis, and molecular docking. By combining magnetic nanomaterials with hyaluronidase functional groups, we immobilized hyaluronidase on magnetic nanomaterials for the first time in the literature. We then utilized an immobilized enzyme to specifically adsorb the ligand; two ligands were identified as salvianolic acid B and rosmarinic acid by HPLC analysis after desorption of the dangling ligands, to complete the rapid screening of potential anti-inflammatory active ingredients in S. miltiorrhiza roots. The median-effect equation and combination index results indicated that their synergistic inhibition of hyaluronidase at a fixed 3:2 ratio was enhanced with increasing concentrations. Kinetic studies revealed that they acted as mixed-type inhibitors of hyaluronidase. Salvianolic acid B had Ki and Kis values of 0.22 and 0.96 µM, respectively, while rosmarinic acid had values of 0.54 and 4.60 µM. Molecular docking revealed that salvianolic acid B had a higher affinity for hyaluronidase than rosmarinic acid. In addition, we observed that a 3:2 combination of SAB and RA significantly decreased the secretion of TNF-α, IL-1, and IL-6 inflammatory cytokines in UVB-irradiated HaCaT cells. These findings identify salvianolic acid B and rosmarinic acid as key components with the potential to inhibit skin inflammation, as found in S. miltiorrhiza. This research is significant for developing skin inflammation treatments. It demonstrates the effectiveness and broad applicability of the magnetic nanoparticle-based ligand fishing approach for screening enzyme inhibitors derived from herbal extracts.


Asunto(s)
Antiinflamatorios , Benzofuranos , Cinamatos , Depsidos , Hialuronoglucosaminidasa , Simulación del Acoplamiento Molecular , Ácido Rosmarínico , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , Humanos , Benzofuranos/farmacología , Benzofuranos/química , Depsidos/farmacología , Depsidos/química , Cinamatos/farmacología , Cinamatos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Enzimas Inmovilizadas/química , Inflamación/tratamiento farmacológico
19.
Int J Dermatol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955457

RESUMEN

BACKGROUND: Vascular adverse events (VAEs) occurring during injections of soft-tissue fillers are still considered a challenging issue for both patients and practitioners. Hyaluronidase can dissolve hyaluronic acid (HA)-based soft-tissue fillers during a VAE. For VAEs induced by non-HA fillers, the absence of an "antidote" is regarded as exceptionally challenging. METHODS: This multicenter study describes a case series of three VAEs induced by non-HA fillers, for which ultrasound-guided hyaluronidase injections were incorporated into the treatment approach. RESULTS: Two cases of calcium hydroxylapatite and one case of poly-L-lactic acid-induced VAEs are described, all of which were resolved without necrosis or scarring using a treatment approach with ultrasound-guided hyaluronidase injections. CONCLUSIONS: Unlike the mechanical hypothesis, which assumes filler particles travel antegrade to block arterioles in a large skin area, we hypothesize vasoconstriction as the pivot in VAEs. Filler injection-induced spasms could lead to long-lasting vasoconstriction of the perforator arteries stemming from the central facial arteries. Our results underscore that perforasome vasoconstriction might be the leading cause of the ischemia and subsequent necrosis in VAEs and that relaxation of these perforasomes, rather than dissolving the filler material, resolves the clinical symptoms associated with VAEs.

20.
ACS Biomater Sci Eng ; 10(7): 4400-4410, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38917429

RESUMEN

Tympanic membrane perforation (TMP) is prevalent in clinical settings. Patients with TMPs often suffer from infections caused by Staphylococcus aureus and Pseudomonas aeruginosa, leading to middle ear and external ear canal infections, which hinder eardrum healing. The objective of this study is to fabricate an enzyme-responsive antibacterial electrospun scaffold using poly(lactic-co-glycolic acid) and hyaluronic acid for the treatment of infected TMPs. The properties of the scaffold were characterized, including morphology, wettability, mechanical properties, degradation properties, antimicrobial properties, and biocompatibility. The results indicated that the fabricated scaffold had a core-shell structure and exhibited excellent mechanical properties, hydrophobicity, degradability, and cytocompatibility. Furthermore, in vitro bacterial tests and ex vivo investigations on eardrum infections suggested that this scaffold possesses hyaluronidase-responsive antibacterial properties. It may rapidly release antibiotics when exposed to the enzyme released by S. aureus and P. aeruginosa. These findings suggest that the scaffold has great potential for repairing TMPs with infections.


Asunto(s)
Antibacterianos , Ácido Hialurónico , Hialuronoglucosaminidasa , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Pseudomonas aeruginosa , Staphylococcus aureus , Andamios del Tejido , Membrana Timpánica , Antibacterianos/farmacología , Antibacterianos/química , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/química , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química , Pseudomonas aeruginosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Humanos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacología , Ácido Láctico/química , Ácido Láctico/farmacología , Perforación de la Membrana Timpánica/tratamiento farmacológico , Perforación de la Membrana Timpánica/terapia , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA