Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Adv Sci (Weinh) ; : e2400802, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044364

RESUMEN

Organic-inorganic hybrid thermoelectric (TE) materials have attracted tremendous interest for harvesting waste heat energy. Due to their mechanical flexibility, inorganic-organic hybrid TE materials are considered to be promising candidates for flexible energy harvesting devices. In this work, enhanced TE properties of Tellurium (Te) nanowires (NWs)- poly (3-hexylthiophene-2, 5-diyl) (P3HT) hybrid materials are reported by improving the charge transport at interfacial layer mediated via controlled oxidation. A power factor of ≈9.8 µW (mK2)-1 is obtained at room temperature for oxidized P3HT-TeNWs hybrid materials, which increases to ≈64.8 µW (mK2)-1 upon control of TeNWs oxidation. This value is sevenfold higher compared to P3HT-TeNWs-based hybrid materials reported in the literature. MD simulation reveals that oxidation-free TeNWs demonstrate better templating for P3HT polymer compared to oxidized TeNWs. The Kang-Snyder model is used to study the charge transport in these hybrid materials. A large σE0 value is obtained which is related to better templating of P3HT on oxygen-free TeNWs. This work provides evidence that oxidation control of TeNWs is critical for better interface-driven charge transport, which enhances the thermoelectric properties of TeNWs-P3HT hybrid materials. This work provides a new avenue to improve the thermoelectric properties of a new class of hybrid thermoelectric materials.

2.
Adv Sci (Weinh) ; : e2402980, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978346

RESUMEN

Promising advances in adsorption technology can lead to energy-efficient solutions in industrial sectors. This work presents precise molecular sieving of xylene isomers in the polymer-metal-oragnic framework (polyMOF), a hybrid porous material derived from the parent isoreticular MOF-1 (IRMOF-1). PolyMOFs are synthesized by polymeric ligands bridged by evenly spaced alkyl chains, showing reduced pore sizes and enhanced stabilities compared to its parent material due to tethered polymer bridge within the pores while maintaining the original rigid crystal lattice. However, the exact configuration of the ligands within the crystals remain unclear, posing hurdles to predicting the adsorption performances of the polyMOFs. This work reveals that the unique pore structure of polyIRMOF-1-7a can discriminate xylene isomers with sub-angstrom size differences, leading to highly selective adsorption of p-xylene over other isomers and alkylbenzenes in complex liquid mixtures (αpX/OM = 15 and αpX/OME = 9). The structural details of the polyIRMOF-1-7a are elucidated through computational studies, suggesting a plausible configuration of alkyl chains within the polyMOF crystal, which enable a record-high p-xylene selectivity and stability in liquid hydrocarbon. With this unprecedented molecular selectivity in MOFs, "polymer-MOF" hybridization is expected to meet rigorous requirements for high-standard molecular sieving through precisely tunable and highly stable pores.

3.
J Colloid Interface Sci ; 672: 477-485, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852350

RESUMEN

Hydrophilic coating can prevent surface from fogging but its application is limited by low mechanical performance. In this study, a hydrophilic coating was prepared by crosslinking the Si-doped carbonized polymer dot (Si-CPD) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) and ethylene oxide (EO). The hydrophilic coating can be used as robust hydrophilic anti-fogging coating. The Si-CPD derived from ethylene diamine tetraacetic acid (EDTA) and aminopropyl oligosiloxanes (APOS) was successfully prepared via one-step hydrothermal method. Then, a resin solution was prepared by mixing Si-CPD, GPTMS and EO. Epoxy group of GPTMS and EO can react with amino group of Si-CPD. Finally, a composite coating with antifogging function can be obtained by simple heating curing. Due to the introduction of hydroxyl which derived from EO, the coating shows excellent antifogging performance. Meanwhile, the presence of inorganic component endows the coating with outstanding mechanical performance. The coating has great potential in related applications, such as optical lenses, mirrors and other transparency substrates.

4.
Food Res Int ; 188: 114492, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823875

RESUMEN

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Asunto(s)
Curcumina , Conservación de Alimentos , Perciformes , Dióxido de Silicio , Curcumina/farmacología , Curcumina/química , Animales , Dióxido de Silicio/química , Conservación de Alimentos/métodos , Nanopartículas , Alimentos Marinos , Solubilidad , Oxígeno Singlete , Fotólisis , Humanos
5.
Chemosphere ; 360: 142408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789056

RESUMEN

A massive amount of toxic substances and harmful chemicals are released every day into the outer environment, imposing serious environmental impacts on both land and aquatic animals. To date, research is constantly in progress to determine the best catalytic material for the effective remediation of these harmful pollutants. Hybrid nanomaterials prepared by combining functional polymers with inorganic nanostructures got attention as a promising area of research owing to their remarkable multifunctional properties deriving from their entire nanocomposite structure. The versatility of the existing nanomaterials' design in polymer-inorganic hybrids, with respect to their structure, composition, and architecture, opens new prospects for catalytic applications in environmental remediation. This review article provides comprehensive detail on catalytic polymer nanocomposites and highlights how they might act as a catalyst in the remediation of toxic pollutants. Additionally, it provides a detailed clarification of the processing of design and synthetic ways for manufacturing polymer nanocomposites and explores further into the concepts of precise design methodologies. Polymer nanocomposites are used for treating pollutants (electrocatalytic, biocatalytic, catalytic, and redox degradation). The three catalytic techniques that are frequently used are thoroughly illustrated. Furthermore, significant improvements in the method through which the aforementioned catalytic process and pollutants are extensively discussed. The final section summarizes challenges in research and the potential of catalytic polymer nanocomposites for environmental remediation.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanocompuestos , Polímeros , Restauración y Remediación Ambiental/métodos , Catálisis , Polímeros/química , Contaminantes Ambientales/química , Nanocompuestos/química , Oxidación-Reducción
6.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611187

RESUMEN

Polymer-semiconductor hybrid materials or composites have been investigated with respect to their microstructure, optical, photoconductive, and ferroelectric properties. For this purpose, either CdSe quantum dots or (Cd:Zn)S microparticles were dispersed in poly(vinylidenefluoride-trifluoroethylene) solution and hot pressed to films. In both material systems, the electrical conductivity and the polarization behavior could be controlled by the intensity of the optical excitation. The simultaneous high optical transparency of the CdSe quantum-dot-based hybrid materials makes them particularly interesting for applications in the field of flexible, high-resolution sensors.

7.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565363

RESUMEN

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Asunto(s)
Péptidos , Péptidos/química , Unión Proteica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Mediciones Luminiscentes , Porfirinas/química , Platino (Metal)/química , Albúmina Sérica Bovina/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Nucleolina , Animales
8.
J Dent ; 144: 104960, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513937

RESUMEN

OBJECTIVES: The present study aims to examine the influence of the build angle on the accuracy (trueness and precision) of 3D printed crowns, table-tops and veneers with a hybrid resin-ceramic material. METHODS: One crown, on table-top and one veneer were printed in five different build angles (0°, 30°, 45°, 60°, 90°) (n = 50) with the digital light processing (DLP) system (Varseo XS, Bego) using hybrid resin (Varseo Smile Crownplus A3, Bego). All printed restorations were scanned using the laboratory scanner (D2000, 3Shape) and matched onto the initial reference design in metrology software (Geomagic Control X, 3D Systems). The root mean square error (RMSE) was calculated between the scanned and reference data. The data was statistically analyzed using the Tukey multiple comparison test and Wilcoxon multiple comparison test. RESULTS: The crown group showed higher trueness at 30° (0.021 ± 0.002) and 45° (0.020 ± 0.002), and table-tops at 0° (0.015 ± 0.001) and 30° (0.014 ± 0.001) (p < 0.0001). Veneers demonstrated higher trueness at 30° (0.016 ± 0.002) (p < 0.0001). All three restoration types demonstrated the lowest trueness at a 90° build angle and portrayed deviations along the z axis. The veneer and table-top groups showed the lowest precision at 90° (veneers: 0.021 ± 0.008; table-tops: 0.013 ± 0.003). The crown group portrayed the lowest precision at 45° (0.017 ± 0.005) (p < 0.0001). CONCLUSION: The build angle of DLP-printed hybrid resin-ceramic restorations influences their accuracy. CLINICAL SIGNIFICANCE: Considering the build angle is important to achieve a better accuracy of 3D-printed resin-ceramic hybrid restorations. This may help predict or avoid the interference points between a restoration and a die and minimize the clinical adjustments.


Asunto(s)
Cerámica , Diseño Asistido por Computadora , Coronas , Diseño de Prótesis Dental , Coronas con Frente Estético , Impresión Tridimensional , Humanos , Diseño de Prótesis Dental/métodos , Cerámica/química , Propiedades de Superficie , Porcelana Dental/química , Materiales Dentales/química , Procesamiento de Imagen Asistido por Computador/métodos , Ensayo de Materiales
9.
ACS Appl Mater Interfaces ; 16(13): 17016-17024, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38514388

RESUMEN

Crystalline porous metal-organic materials are ideal building blocks for separation membranes because of their molecular-sized pores and highly ordered pore structure. However, creating ultrathin, defect-free crystalline membranes is challenging due to inevitable grain boundaries. Herein, we reported an amorphous metal-organic hybrid (MOH) membrane with controlled microporosity. The synthesis of the MOH membrane entails the use of titanium alkoxide and organic linkers containing di/multicarboxyl groups as monomers in the polymerization reaction. The resultant membranes exhibit similar microporosity to existing molecular sieve materials and high chemical stability against harsh chemical environments owing to the formation of stable Ti-O bonds between metal centers and organic linkers. An interfacial polymerization is developed to fabricate an ultrathin MOH membrane (thickness of the membrane down to 80 nm), which exhibits excellent rejections (>98% for dyes with molecular weights larger than 690 Da) and high water permeance (55 L m-2 h-1 bar-1). The membranes also demonstrate good flexibility, which greatly improves the processability of the membrane materials.

10.
Acta Pharm Sin B ; 14(2): 795-807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322334

RESUMEN

Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.

11.
Polymers (Basel) ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399852

RESUMEN

The main objective of this study was to discover new packaging materials that could integrate one of the most expected properties, such as UV protection, with a self-cleaning ability defined as photocatalytic performance. Accordingly, new hybrid additives were used to transform LDPE films into materials with complex performance properties. In this study, titanium dioxide-lignin (TL) hybrid systems with a weight ratio of inorganic to organic precursors of 5-1, 1-1, and 1-5 were prepared using a mechanical method. The obtained materials and pristine components were characterized using measurement techniques and research methods, such as Fourier-transform infrared spectroscopy (FTIR), thermal stability analysis (TGA/DTG), measurement of the electrokinetic potential as a function of pH, scanning electron microscopy (SEM), and particle size distribution measurement. It was found that hydrogen bonds were formed between the organic and inorganic components, based on which the obtained systems were classified as class I hybrid materials. In the next step, inorganic-organic hybrid systems and pristine components were used as fillers for a low-density polyethylene (LDPE) composite, 5 and 10% by weight, in order to determine their impact on parameters such as tensile elongation at break. Polymer composites containing titanium dioxide in their matrix were then subjected to a test of photocatalytic properties, based on which it was found that all materials with TiO2 in their structure exhibit photocatalytic properties, whereby the best results were obtained for samples containing the TiO2-lignin hybrid system (1-1). The mechanical tests showed that the thin sheet films had a strong anisotropy due to chill-roll extrusion, ranging from 1.98 to 3.32. UV-Vis spectroscopy revealed four times higher light absorption for composites in which lignin was present than for pure LDPE, in the 250-450 nm range. On the other hand, the temperature at 5% and 30% weight loss revealed by TGA testing increased the highest performance for LDPE/TiO2 materials (by 20.4 °C and 8.7 °C, respectively).

12.
Small ; 20(26): e2310722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229525

RESUMEN

Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.

13.
Chemistry ; 30(17): e202303996, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38165074

RESUMEN

Inorganic-organic hybrid materials are a kind of multiduty materials with high crystallinity and definite structures, built from functional inorganic and organic components with highly tunable photochemical properties. Perylenediimides (PDIs) are a kind of strong visible light-absorbing organic dyes with π-electron-deficient planes and photochemical properties depending on their micro-environment, which provides a platform for designing tunable and efficient hybrid photocatalytic materials. Herein, four radical-doped PDI-based crystalline hybrid materials, Cl4-PDI⋅SiW12O40 (1), Cl4-PDI⋅SiMo12O40 (2), Cl4-PDI⋅PW12O40 (3), and Cl4-PDI⋅PMo12O40 (4), were attained by slow diffusion of polyoxometalates (POMs) into acidified Cl4-PDI solutions. The obtained PDI-based crystalline hybrid materials not only exhibited prominent photochromism, but also possessed reactive organic radicals under ambient conditions. Furthermore, all hybrid materials could be easily photoreduced to their radical anions (Cl4-PDI⋅-), and then underwent a second photoexcitation to form energetic excited state radical anions (Cl4-PDI⋅-*). However, experiments and theoretical calculations demonstrated that the formed energetic Cl4-PDI⋅-* showed unusual POM-dependent photocatalytic efficiencies toward the oxidative coupling of amines and the iodoperfluoroalkylation of alkenes; higher photocatalytic efficiencies were found for hybrid materials 1 (anion: SiW12O40 4-) and 2 (anion: SiMo12O40 4-) compared to 3 (anion: PW12O40 3-) and 4 (anion: PMo12O40 3-). The photocatalytic efficiencies of these hybrid materials are mainly controlled by the energy differences between the SOMO-2 level of Cl4-PDI⋅-* and the LUMO level of the POMs. The structure-photocatalytic activity relationships established in present work provide new research directions to both the photocatalysis and hybrid material fields, and will promote the integration of these areas to explore new materials with interesting properties.

14.
Chemistry ; 30(3): e202302589, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37752657

RESUMEN

Since Cu2+ ions play a pivotal role in both ecosystems and human health, the development of a rapid and sensitive method for Cu2+ detection holds significant importance. Fluorescent mesoporous silica materials (FMSMs) have garnered considerable attention in the realm of chemical sensing, biosensing, and bioimaging due to their distinctive structure and easily functionalized surfaces. As a result, numerous Cu2+ sensors based on FMSMs have been devised and extensively applied in environmental and biological Cu2+ detection over the past few decades. This review centers on the recent advancements in the methodologies for preparing FMSMs, the mechanisms underlying sensing, and the applications of FMSMs-based sensors for Cu2+ detection. Lastly, we present and elucidate pertinent perspectives concerning FMSMs-based Cu2+ sensors.

15.
Talanta ; 270: 125557, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128284

RESUMEN

As the development of global population and industry civilization, the accurate and sensitive detection of intended analytes is becoming an important and great challenge in the field of environmental, medical, and public safety. Recently, electrochemical biosensors have been constructed and used in sensing fields, such as antibiotics, pesticides, specific markers of cancer, and so on. Functional materials have been designed and prepared to enhance detection performance. Among all reported materials, covalent organic frameworks (COFs) are emerging as porous crystalline materials to construct electrochemical biosensors, because COFs have many unique advantages, including large surface area, high stability, atom-level designability, and diversity, to achieve a far better sensing performance. In this comprehensive review, we not only summarize state-of-the-art electrochemical biosensors based on COFs and their hybrid materials but also highlight and discuss some typical examples in detail. We finally provide the challenge and future perspective of COFs-based electrochemical biosensors.

16.
Molecules ; 28(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894570

RESUMEN

CO2 absorption has been driven by the need for efficient and environmentally sustainable CO2 capture technologies. The development in the synthesis of ionic liquids (ILs) has attracted immense attention due to the possibility of obtaining compounds with designated properties. This allows ILs to be used in various applications including, but not limited to, biomass pretreatment, catalysis, additive in lubricants and dye-sensitive solar cell (DSSC). The utilization of ILs to capture carbon dioxide (CO2) is one of the most well-known processes in an effort to improve the quality of natural gas and to reduce the green gases emission. One of the key advantages of ILs relies on their low vapor pressure and high thermal stability properties. Unlike any other traditional solvents, ILs exhibit high solubility and selectivity towards CO2. Frequently studied ILs for CO2 absorption include imidazolium-based ILs such as [HMIM][Tf2N] and [BMIM][OAc], as well as ILs containing amine groups such as [Cho][Gly] and [C1ImPA][Gly]. Though ILs are being considered as alternative solvents for CO2 capture, their full potential is limited by their main drawback, namely, high viscosity. Therefore, the hybridization of ILs has been introduced as a means of optimizing the performance of ILs, given their promising potential in capturing CO2. The resulting hybrid materials are expected to exhibit various ranges of chemical and physical characteristics. This review presents the works on the hybridization of ILs with numerous materials including activated carbon (AC), cellulose, metal-organic framework (MOF) and commercial amines. The primary focus of this review is to present the latest innovative solutions aimed at tackling the challenges associated with IL viscosity and to explore the influences of ILs hybridization toward CO2 capture. In addition, the development and performance of ILs for CO2 capture were explored and discussed. Lastly, the challenges in ILs hybridization were also being addressed.

17.
Sensors (Basel) ; 23(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37837082

RESUMEN

Chemical pressure storage tanks are containers designed to store fluids at high pressures, i.e., their internal pressure is higher than the atmospheric pressure. They can come in various shapes and sizes, and may be fabricated from a variety of materials. As aggressive chemical agents stored under elevated pressures can cause significant damage to both people and the environment, it is essential to develop systems for the early damage detection and the monitoring of structural integrity of such vessels. The development of early damage detection and condition monitoring systems could also help to reduce the maintenance costs associated with periodic inspections of the structure and unforeseen operational breaks due to unmonitored damage development. It could also reduce the related environmental burden. In this paper, we consider a hybrid material composed of glass-fiber-reinforced polymers (GFRPs) and a polyethylene (PE) layer that is suitable for pressurized chemical storage tank manufacturing. GFRPs are used for the outer layer of the tank structure and provides the dominant part of the construction stiffness, while the PE layer is used for protection against the stored chemical medium. The considered damage scenarios include simulated cracks and an erosion of the inner PE layer, as these can be early signs of structural damage leading to the leakage of hazardous liquids, which could compromise safety and, possibly, harm the environment. For damage detection, PZT sensors were selected due to their widely recognized applicability for the purpose of structural health monitoring. For sensor installation, it was assumed that only the outer GFRP layer was available as otherwise sensors could be affected by the stored chemical agent. The main focus of this paper is to verify whether elastic waves excited by PZT sensors, which are installed on the outer GFRP layer, can penetrate the GFRP and PE interface and can be used to detect damage occurring in the inner PE layer. The efficiency of different signal characteristics used for structure evaluation is compared for various frequencies and durations of the excitation signal as well as feasibility of PZT sensor application for passive acquisition of acoustic emission signals is verified.

18.
Adv Sci (Weinh) ; 10(35): e2304147, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844996

RESUMEN

Most plastics originate from limited petroleum reserves and cannot be effectively recycled at the end of their life cycle, making them a significant threat to the environment and human health. Closed-loop chemical recycling, by depolymerizing plastics into monomers that can be repolymerized, offers a promising solution for recycling otherwise wasted plastics. However, most current chemically recyclable polymers may only be prepared at the gram scale, and their depolymerization typically requires harsh conditions and high energy consumption. Herein, it reports less petroleum-dependent closed-loop recyclable silica-based nanocomposites that can be prepared on a large scale and have a fully reversible polymerization/depolymerization capability at room temperature, based on catalysis of free aminopropyl groups with the assistance of diethylamine or ethylenediamine. The nanocomposites show glass-like hardness yet plastic-like light weight and toughness, exhibiting the highest specific mechanical strength superior even to common materials such as poly(methyl methacrylate), glass, and ZrO2 ceramic, as well as demonstrating multifunctionality such as anti-fouling, low thermal conductivity, and flame retardancy. Meanwhile, these nanocomposites can be easily processed by various plastic-like scalable manufacturing methods, such as compression molding and 3D printing. These nanocomposites are expected to provide an alternative to petroleum-based plastics and contribute to a closed-loop materials economy.

19.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687695

RESUMEN

Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown.

20.
Front Chem ; 11: 1166544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674526

RESUMEN

The MoS2 nanobelts/Carbon hybrid nanostructure was synthesized by the simple hydrothermal method. The MoS2 nanobelts were distributed in the interlayers of Lemon grass-derived carbon (LG-C), provides the active sites and avoid restacking of the sheets. The structural and morphological characterization of MoS2/LG-C and LG-C were performed by Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical measurements were studied with cyclic voltammetry, the galvanostatic charge-discharge method, and electrochemical impedance spectroscopy. The specific capacitance of MoS2/LG-C and LG-C exhibits 77.5 F g-1 and 30.1 F g-1 at a current density of 0.5 A g-1. The MoS2/LG-C-based supercapacitor provided the maximum power density and energy density of 273.2 W kg-1 and 2.1 Wh kg-1, respectively. Furthermore, the cyclic stability of MoS2/LG-C was tested using charging-discharging up to 3,000 cycles, confirming only a 71.6% capacitance retention at a current density of 3 A g-1. The result showed that MoS2/LG-C is a superior low-cost electrode material that delivered a high electrochemical performance for the next generation of electrochemical energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA