Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plants (Basel) ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999677

RESUMEN

Hydrolysed tannins (HTs) are polyphenols, which are related to the astringency, flavour, colour, stability, medicinal value and other characteristics of many fruits and vegetables. The biosynthetic mechanism of the majority of HTs remains unknown, and many biosynthetic pathways of HTs are speculative conclusions that have not been confirmed. The fruit of Canarium album L. (Chinese olive), which is notable for its pharmacological and edible properties, is rich in HTs. The fruit has a distinctive bitter and astringent taste when initially consumed, which mellows to a sweet sensation upon chewing. HTs serve as the primary material basis for the formation of the Chinese olive fruit's astringent quality and pharmacological effects. In this study, the fruit of C. album Changying was utilised as the research material. The objective of this study was to provide a theoretical basis for the quality control of Chinese olive fruit and the application and development of its medicinal value. In addition, the study aimed to identify and screen related MYB transcription factors involved in the synthesis of HTs in the fruit and to clarify the mechanism of MYBs in the process of synthesis and regulation of HTs in Chinese olive fruit. The principal findings were as follows. A total of 83 differentially expressed Chinese olive MYB transcription factors (CaMYBs) were identified, including 54 1R-MYBs (MYB-related), 25 2R-MYBs (R2R3-MYBs), 3 3R-MYBs, and 1 4R-MYB. Through trend analysis and correlation analysis, it was found that CaMYBR04 (Isoform0032534) exhibited a significantly higher expression (FPKM) than the other CaMYBs. The full-length cDNA sequence of CaMYBR04 was cloned and transformed into strawberry. The results demonstrated that CaMYBR04 significantly enhanced the fruit's hydrolysable tannin content. Consequently, this study elucidated the function of CaMYBR04, a regulator of the Chinese olive fruit hydrolysable tannin synthesis pathway, and established a theoretical foundation for the synthesis and regulation of fruit HTs.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000172

RESUMEN

In this study, we present data on the effects of condensed tannins (CTs) and hydrolysable tannins (HTs), polyphenols extracted from plants, at different concentrations on zebrafish development to identify the range of concentrations with toxic effects. Zebrafish embryos were exposed to CTs and HTs at two different concentration ranges (5.0-20.0 µgL-1 and 5.0-20.0 mgL-1) for 72 h. The toxicity parameters were observed up to 72 h of treatment. The uptake of CTs and HTs by the zebrafish larvae was assessed via HPLC analysis. A qRT-PCR analysis was performed to evaluate the expressions of genes cd63, zhe1, and klf4, involved in the hatching process of zebrafish. CTs and HTs at 5.0, 10.0, and 20.0 µgL-1 were not toxic. On the contrary, at 5.0, 10.0, and 20.0 mgL-1, HTs induced a delay in hatching starting from 48 h of treatment, while CTs showed a delay in hatching mainly at 48 h. The analysis of gene expression showed a downregulation in the group exposed to HTs, confirming the hatching data. We believe that this study is important for defining the optimal doses of CTs and HTs to be employed in different application fields such as the chemical industry, the animal feed industry, and medical science.


Asunto(s)
Pez Cebra , Pez Cebra/embriología , Pez Cebra/genética , Animales , Taninos Hidrolizables/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proantocianidinas/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Desarrollo Embrionario/efectos de los fármacos
3.
Molecules ; 29(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38893491

RESUMEN

This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.


Asunto(s)
Disolventes Eutécticos Profundos , Taninos , Taninos/química , Taninos/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/farmacología , Plantas/química , Plantas/metabolismo , Solventes/química
4.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927069

RESUMEN

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Asunto(s)
Enterocitos , Taninos Hidrolizables , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células CACO-2 , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Estrés Oxidativo/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo
5.
J Sci Food Agric ; 104(14): 8720-8733, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38940545

RESUMEN

BACKGROUND: Pomegranate peel waste is a valuable reservoir of heat-sensitive total hydrolysable tannins (THT), with potential applications in food and pharmaceuticals. Preserving THT is challenging due to degradation post-extraction. We explore ionic gelation as an encapsulation method to optimize THT utilization. RESULTS: Through external gelation, we optimized the process variables using Box-Behnken design. At 40 g kg-1 sodium alginate, 25 g kg-1 calcium chloride, and 300 g kg-1 pomegranate peel extract (PPE), we achieved an 83.65% encapsulation efficiency. Compared to spray drying, external gelation demonstrated superior performance, with enhanced release percentages and stability. Physical, phytochemical, and release profiles of encapsulates were extensively analysed. External gelation achieved an 87.5% release in 30 min, outperforming spray-dried counterparts (69.7% in 25 min). Encapsulated PPE exhibited robust antibacterial activity against Staphylococcus aureus (ATCC 25923) in powdered infant formula, with a 32 ± 0.01 mm zone of inhibition and 300 µg mL-1 minimum inhibitory concentration. Insights into S. aureus growth curves underlined the mechanism of action via membrane potential alterations. The results of carried investigations also showed that the antibacterial activity of the encapsulated PPE extracts against the targeted organism was identical to the antibacterial activity exhibited by synthetic antibiotics used generally to kill microorganisms in food. Therefore, from the findings, it can be concluded that the PPE encapsulate produced using the external gelation technique at the optimized condition displayed superior storage stability possessing strong antimicrobial activity when compared to encapsulate produced using the spray drying technique. CONCLUSIONS: External gelation emerges as a potent technique for developing effective encapsulates enriched with natural antimicrobials or antibiotics. This approach holds promise for applications in food, pharmaceuticals, and nutraceuticals, enhancing stability and efficacy while reducing reliance on synthetic antibiotics. © 2024 Society of Chemical Industry.


Asunto(s)
Antibacterianos , Frutas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Granada (Fruta) , Staphylococcus aureus , Residuos , Granada (Fruta)/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Frutas/química , Antibacterianos/farmacología , Antibacterianos/química , Residuos/análisis , Taninos/química , Taninos/farmacología , Alimento Perdido y Desperdiciado
6.
Food Chem ; 448: 139153, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569410

RESUMEN

Salivary proteins precipitation by interaction with polyphenols is the major mechanism for astringency. However, alternative mechanisms seem involved in the perception of different subqualities of astringency. In this study, adsorption of four astringent agents to in vitro oral models and their sensory properties were assessed. Overall, green tea infusion and tannic acid have shown a higher adsorption potential for models with oral cells and absence of saliva. Alum and grape seed extract presented higher adsorption in models with presence of oral cells and saliva. Multiple factor analysis suggested that adsorption may represent important mechanisms to elicit the astringency of alum. Models including saliva, were closely associated with overall astringency and aggressive subquality. Models with cells and absent saliva were closely associated with greenness, suggesting a taste receptor mechanism involvement in the perception. For the first time a correlation between an oral-cell based assay and astringency sensory perception was shown.

7.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550333

RESUMEN

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

8.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257267

RESUMEN

In our search for bioactive components, various chromatographic separations of the organic fractions from Filipendula glaberrima leaves led to the isolation of a new ellagitannin and a triterpenoid, along with 26 known compounds. The structures of the isolates were determined based on their spectroscopic properties and chemical evidence, which were then evaluated for their antioxidant activities, inhibitory activities on 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and foam cell formation in THP-1 cells to prevent atherosclerosis. Rugosin B methyl ester (1) showed the best HMG-CoA reductase inhibition and significantly reduced ox-low-density lipoprotein-induced THP-1 macrophage-derived foam cell formation at 25 µM. In addition, no cytotoxicity was observed in THP-1 cells at 50 µg/mL of all extracts in the macrophage foam cell formation assay. Therefore, F. glaberrima extract containing 1 is promising in the development of dietary supplements due to its potential behavior as a novel source of nutrients for preventing and treating atherosclerosis.


Asunto(s)
Acilcoenzima A , Aterosclerosis , Filipendula , Células Espumosas , Antioxidantes/farmacología , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes , Macrófagos , Aterosclerosis/tratamiento farmacológico , Hojas de la Planta
9.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37602531

RESUMEN

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Asunto(s)
Inoculantes Agrícolas , Lactobacillales , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Taninos/farmacología , Lactancia , Inoculantes Agrícolas/metabolismo , Fermentación , Ácido Láctico/metabolismo , Digestión , Leche/química , Dieta/veterinaria , Taninos Hidrolizables/análisis , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/farmacología , Rumen/metabolismo , Extractos Vegetales/farmacología , Rumiantes , Valor Nutritivo , Zea mays/metabolismo
10.
Food Res Int ; 173(Pt 1): 113260, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803573

RESUMEN

Cytinus hypocistis(L.) L. is an edible parasitic plant that grows within the roots of its host. In addition to its use as famine food in the past, it is also tradidionally used for treating several illnesses such as intestinal problems, inflammations, tumors, and bleeding. This species is rich in hydrolysable tannins, compounds often associated with inhibiting starch digestion. Therefore, the present work investigated how effectively C. hypocistis tannin-rich extracts inhibited enzymes involved in starch digestion and if such effect also occurs in vivo. The latter premise was approached using the starch tolerance test in mice. Two optimized hydroethanolic extracts were used, a heat-assisted and an ultrasound-assisted extract, with known hydrolysable tannin content. Both extracts demonstrated potent inhibition of α-amylase. Inhibitions were of the mixed type with inhibitor constants in the 15 µg/mL range. The inhibition of the intestinal α-glucosidase was at least ten times less effective. The inhibition of the α-amylase was negatively affected by in vitro gastrointestinal digestion and bovine serum albumin. In vivo, both extracts inhibited starch digestion at doses between 100 and 400 mg/mL in healthy mice. The highest doses of the ultrasound and heat extracts diminished the peak glucose levels in the starch tolerance test by 46 and 59.3%, respectively. In streptozotocin diabetic mice, this inhibition occurred only at the dose of 400 mg/mL. Under this condition, diminution of the peak glucose concentration in the starch tolerance test was equal to 36.7% and 48.8% for the ultrasound and heat extracts, respectively. Maltose digestion was not inhibited by the C. hypocistis extracts. Qualitatively and quantitatively, thus, the actions of both extracts were similar. The results allow adding a new biological property to C. hypocistis, namely, the ability to decrease the hyper-glycemic excursion after a starch-rich meal, propitiating at the same time a diminished caloric intake.


Asunto(s)
Diabetes Mellitus Experimental , Taninos , Ratones , Animales , Taninos/farmacología , Almidón , Extractos Vegetales/farmacología , alfa-Amilasas/farmacología , Taninos Hidrolizables , Glucosa , Digestión
11.
Drug Dev Res ; 84(6): 1096-1113, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386756

RESUMEN

Fibrosis is a pathological change with abnormal tissue regeneration due to a response to persistent injury, which is extensively related to organ damage and failure, leading to high morbidity and mortality worldwide. Although the pathogenesis of fibrosis has been comprehensively elucidated, there are few effective therapies for treating fibrotic diseases. Natural products are increasingly regarded as an effective strategy for fibrosis with numerous favorable functions. Hydrolysable tannins (HT) are a type of natural products that have the potential to treat the fibrotic disease. In this review, we describe some biological activities and the therapeutic prospects of HT in organ fibrosis. Furthermore, the underlying mechanisms of inhibition of HT on fibrotic organs in relation to inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and proliferation, and extracellular matrix accumulation are discussed. Understanding the mechanism of HT against fibrotic diseases will provide a new strategy for the prevention and attenuation of fibrosis progression.


Asunto(s)
Productos Biológicos , Taninos Hidrolizables , Humanos , Fibrosis , Matriz Extracelular/patología , Inflamación/patología
12.
Front Vet Sci ; 10: 1178288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152691

RESUMEN

Both condensed and hydrolysable tannins (CTs and HTs, respectively) have the ability to reduce enteric CH4 production in ruminants. However, the precise mechanism of action is not fully understood. Among the proposed hypotheses are the reduction of ruminal digestibility, direct control action on protozoa, reduction of archaea, and a hydrogen sink mechanism. In this in vitro study, which simulated rumen fermentation, two additives, one containing CTs (70% based on DM) from quebracho and one with HTs (75% based on DM) from chestnut, at four levels of inclusion (2, 4, 6, 8% on an as-fed basis) were added to the fermentation substrate and tested against a negative control. Both types of tannins significantly reduced total gas (GP) and CH4 (ml/g DM) production during the 48 h of incubation. The lower GP and CH4 production levels were linked to the reduction in dry matter digestibility caused by CTs and HTs. Conversely, no significant differences were observed for the protozoan and archaeal populations, suggesting a low direct effect of tannins on these rumen microorganisms in vitro. However, both types of tannins had negative correlations for the families Bacteroidales_BS11 and F082 and positive correlations for the genera Prevotella and Succinivibrio. Regarding the fermentation parameters, no differences were observed for pH and total volatile fatty acid production, while both CTs and HTs linearly reduced the NH3 content. CTs from quebracho were more effective in reducing CH4 production than HTs from chestnut. However, for both types of tannins, the reduction in CH4 production was always associated with a lower digestibility without any changes in archaea or protozoa. Due to the high variability of tannins, further studies investigating the chemical structure of the compounds and their mechanisms of action are needed to understand the different results reported in the literature.

13.
Animals (Basel) ; 13(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36899752

RESUMEN

Boar taint is an unpleasant odour and flavour released during heat treatment of pork from uncastrated male pigs. The two main compounds responsible for boar taint are androstenone and skatole. Androstenone is a steroid hormone formed in the testis during sexual maturity. Skatole is a product of microbial degradation of the amino acid tryptophan in the hindgut of pigs. Both of these compounds are lipophilic, which means that they can be deposited in adipose tissue. Several studies have reported heritability estimates for their deposition from medium (skatole) to high magnitudes (androstenone). In addition to efforts to influence boar taint through genetic selection, much attention has also been paid to reducing its incidence using various feeding strategies. From this point of view, research has focused especially on the reduction in skatole content by supplementation of feed additives into the nutrition of entire male pigs. Promising results have been achieved using hydrolysable tannins in the diet. To date, most studies have investigated the effects of tannins on the production and accumulation of skatole in adipose tissue, intestinal microbiota, growth rate, carcasses and pork quality. Thus, the objective of this study was, in addition to determining the effects of tannins on androstenone and skatole accumulation, to assess the effects of tannins on the sensory traits of meat from entire males. The experiment was performed on 80 young boars-progeny of several hybrid sire lines. Animals were randomly assigned to one control and four experimental groups (each numbering 16). The control group (T0) received a standard diet without any tannin supplementation. Experimental groups were supplemented with 1% (T1), 2% (T2), 3% (T3) or 4% (T4) SCWE (sweet chestnut wood extract) rich in hydrolysable tannins (Farmatan). Pigs received this supplement for 40 days prior to slaughter. Subsequently, the pigs were slaughtered, and sensory analysis was applied to evaluate the odour, flavour, tenderness and juiciness of the pork. The results showed a significant effect of tannins on skatole accumulation in adipose tissue (p = 0.052-0.055). The odour and flavour of the pork were not affected by tannins. However, juiciness and tenderness were reduced by higher tannin supplementation (T3-T4) compared to the controls (p < 0.05), but these results were sex-dependent (in favour of men compared to women). Generally, women rated tenderness and juiciness worse than men regardless of the type of diet.

14.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557796

RESUMEN

Castanea sativa Mill. (Fagaceae) is a deciduous tree grown for its wood and edible fruits. Chestnut processing produces residues (burs, shells, and leaves) exploitable for their diversity in bioactive compounds in animal nutrition. In fact, plant-specialized metabolites likely act as rumen modifiers. Thus, the recovery of residual plant parts as feed ingredients is an evaluable strategy. In this context, European chestnut leaves from northern Germany have been investigated, proving to be a good source of flavonoids as well as gallo- and ellagitannins. To this purpose, an alcoholic extract was obtained and an untargeted profiling carried out, mainly by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HR MS/MS) techniques. To better unravel the polyphenol constituents, fractionation strategies were employed to obtain a lipophilic fraction and a polar one. This latter was highly responsive to total phenolic and flavonoid content analyses, as well as to antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) assays. The effect of the alcoholic extract and its fractions on rumen liquor was also evaluated in vitro in terms of fermentative parameter changes and impact on methanogenesis. The data acquired confirm that chestnut leaf extract and the fractions therefrom promote an increase in total volatile fatty acids, while decreasing acetate/propionate ratio and CH4 production.


Asunto(s)
Fagaceae , Espectrometría de Masas en Tándem , Animales , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Fermentación , Rumen , Flavonoides , Fagaceae/química
15.
Animal ; 16(8): 100589, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839617

RESUMEN

Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32-61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged âˆ¼ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.


Asunto(s)
Fabaceae , Proantocianidinas , Alimentación Animal/análisis , Animales , Bovinos , Fibras de la Dieta/metabolismo , Femenino , Fermentación , Metano/metabolismo , Proantocianidinas/metabolismo , Rumen/metabolismo , Taninos/metabolismo
16.
Antioxidants (Basel) ; 11(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35326247

RESUMEN

In the thermal-drying processing of astringent persimmon fruit, the tissue-specific changes in the key antioxidants have hardly been investigated, while they have been well investigated in the flesh. We report here the different patterns of the antioxidant activities in the thermally processed flesh and peel of astringent persimmon, with analyses of the carotenoids, the condensed and hydrolysable tannins, and the total phenolics and flavonoids. The persimmon powders presented different colors on the basis of the drying temperatures: brown in 30 °C; light yellow in 60 °C; and dark brown in 90 °C, respectively. Non-maillard reaction and reduction of carotenoids caused the light-yellow color of 60 °C dried persimmon. Thermal drying reduced the antioxidant activities of the flesh in a temperature-dependent manner, with decreases in the carotenoids, the condensed and hydrolysable tannins, and the total phenolics and flavonoids, whereas it enhanced the antioxidant activities of the peel. The increase in the antioxidant activities in the peel were mainly the result of the increase in the total phenolics by the thermal effect, and especially in the content of the hydrolysable tannins, although the thermal processing decreased the other components. The heat-induced increase of antioxidant activity in the peel showed a strong significant correlation only with the contents of total phenolics (r2 = 0.9493) and total hydrolysable tannins (r2 = 0.9288), suggesting that the main antioxidant contributors differ from the flesh.

17.
J Pharm Pharmacol ; 74(5): 718-729, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35134979

RESUMEN

OBJECTIVES: Hydrolysable tannin fraction (HTF) derived from Terminalia chebula fruit pericarps was assessed for its anti-inflammatory potential in LPS-induced RAW 264.7 cells. Its molecular mechanism was also established and compared with individual tannins - chebulagic acid (CH) and corilagin (CO). METHODS: The effect of HTF on LPS-stimulated RAW 264.7 cells was studied by estimating the release of NO, ROS, cytokines and changes in nuclear morphology by DAPI staining. Furthermore, the effect of HTF, CO and CH was compared with the expression of p65, p38 and pERK proteins by immunoblotting and the mRNA transcript level of COX-2, iNOS and TNF-α by quantitative PCR. The in-silico interactions of various hydrolysable tannins present in HTF with molecular targets of inflammation were studied using Maestro software. KEY FINDINGS: HTF at the dose levels of 25, 50 and 100 µg/ml was able to decrease the release of NO, ROS and cytokines from LPS-induced RAW 264.7 cells without disturbing the cell nuclear morphology. Investigation of molecular mechanism revealed that inhibition of NF-κB and MAPK signalling pathways was responsible for its anti-inflammatory action. The effect of HTF was higher than the individual tannins CH and CO. CONCLUSION: HTF can be developed as an effective anti-inflammatory agent.


Asunto(s)
FN-kappa B , Terminalia , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Frutas , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Extractos Vegetales , Células RAW 264.7 , Especies Reactivas de Oxígeno , Transducción de Señal , Taninos/farmacología
18.
Food Chem ; 382: 132322, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158268

RESUMEN

This research was focused on identifying gallotannins and ellagitannins degradation pathways to better understand their behavior in complex media such as wine spirits (WS). A WS was aged with chestnut wood staves with three levels of micro-oxygenation, nitrogen, and using wooden barrels. Gallotannins and ellagitannins were identified by LC-ESI-HRMS/MS using a Q-TOF in samples collected at 8, 21, 60, 180, 270, and 365 days of ageing, allowed comparing their relative abundances according to the ageing technology. It was established for the first time, the importance of oxygen in gallotannins and ellagitannins formation/degradation pathways in WS and shading light into the explanation for the steady increase of gallic and ellagic acid contents on WS during ageing. The results also highlighted the presence of penta-O-galloyl-ß-d-glucose, tetra-O-galloyl-ß-d-glucose, tri-O-galloyl-ß-d-glucose, di-O-galloyl-ß-d-glucose, and mono-O-galloyl-ß-d-glucose, 2,3-(S)-hexahydroxydiphenoyl-ß-d-glucose, pedunculagin, isomers vescalagin/castalagin and two products stemming from ethanol-promoted oxidation of castalagin/vescalagin and vescalin/castalin, in the composition WS aged with chestnut wood.


Asunto(s)
Taninos Hidrolizables , Vino , Taninos Hidrolizables/química , Espectrometría de Masas , Tecnología
19.
Biochim Biophys Acta Biomembr ; 1864(1): 183778, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537215

RESUMEN

Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-ß-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-ß-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1. The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.


Asunto(s)
Compuestos de Bifenilo/química , Taninos Hidrolizables/química , Liposomas/química , Lípidos de la Membrana/química , Picratos/química , Rastreo Diferencial de Calorimetría , Dimiristoilfosfatidilcolina/química , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo
20.
J Biomol Struct Dyn ; 40(23): 12917-12931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34569409

RESUMEN

Pomegranate peel, the waste product generated from pomegranate fruit, has prophylactic properties, such as antimicrobial, anti-malarial, and controls respiratory infections and influenza. Based on the previous literature and need of the hour, molecular docking was performed to evaluate the inhibitory effects of major pomegranate peel polyphenols against COVID-19. Among the 44 studied compounds, 37 polyphenols show interaction with the catalytic dyad of the Mpro protease and 18 polyphenols have a higher binding affinity than that of the Mpro protease inhibitor (N3), indicating their high probability of binding at ACE2: SARS-CoV-2 interface. Furthermore, several polyphenols studied in this work are found to have higher binding affinity as compared to those of hydroxychloroquine, lopinavir, nelfinavir, and curcumin, some of which have been earlier tested against COVID-19. Further, molecular dynamics simulations (200 ns) for Mpro-polyphenols including pelargonidin3-glucoside, quercetin3-O-rhamnoside, cyanidin3-glucoside and punicalin revealed highly stable complexes with less conformational fluctuations and similar degree of compactness. Estimation of total number of intermolecular hydrogen bonds and binding free energy confirmed the stability of these Mpro-polyphenol complexes over Mpro-curcumin complex. Based on the greater binding affinity of polyphenols of pomegranate peel towards Mpro as compared to that of curcumin, pomegranate peel may be considered in any herbal medicinal formulation or may be incorporated into daily diets for prevention of COVID-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Curcumina , Granada (Fruta) , Frutas , Simulación de Dinámica Molecular , Curcumina/farmacología , Simulación del Acoplamiento Molecular , COVID-19/prevención & control , SARS-CoV-2 , Glucósidos , Inhibidores de Proteasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA