Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Cyst Fibros ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39353741

RESUMEN

BACKGROUND: Monitoring multiple-breath washout (MBW) of a xenon tracer using magnetic resonance imaging (MBW Xe-MRI) provides quantitative regional measures of gas washout (fractional ventilation, FV) and spatial ventilation heterogeneity (coefficient of variation, CoVFV) in pediatric CF lung disease, but has yet to be evaluated in an interventional setting. METHODS: 12 pediatric CF participants (median age 15.3 ± 2 years) completed MBW Xe-MRI, pulmonary function tests (PFTs) (spirometry, N2 MBW for lung clearance index (LCI)) and single-breath Xe-MRI ventilation defect percent (VDP) measurements at baseline and 1-month post-initiation of elexacaftor/tezacaftor/ivacaftor (ETI) therapy. FV maps were calculated from MBW Xe-MRI washout images, and CoVFV maps were derived from FV maps. Significant changes between visits were determined using a paired Wilcoxon signed-rank test. For correlations between absolute changes, Pearson's correlation was used. RESULTS: All measures changed significantly 1-month post-ETI therapy compared to baseline. For MRI metrics, median [IQR] VDP was significantly (P < 0.001) lower at 1 month (8.0 [3.7 12.4]) compared to baseline (17.8 [8.3 22.5]), FV was significantly (P < 0.05) higher at 1 month (0.42 [0.41 0.46]) compared to baseline (0.38 [0.33 0.44]), and CoVFV was significantly (P < 0.001) lower at 1 month (0.06 [0.05 0.07]) compared to baseline (0.09 [0.08 0.12]). Both absolute and relative differences in CoVFV and LCI were found to correlate highly (R = 0.92, P < 0.0001 and R = 0.91, P < 0.0001, respectively). CONCLUSIONS: Functional information derived from MBW Xe-MRI, particularly CoVFV, can be used to assess regional lung function in pediatric CF patients in an interventional setting and may be complementary to VDP and pulmonary function tests.

2.
Magn Reson Med ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323101

RESUMEN

PURPOSE: Three-dimensional hyperpolarized 129Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase 129Xe imaging and to investigate the feasibility of CS-dissolved 129Xe imaging with reduced-cost natural abundance (NA) xenon. METHODS: 129Xe gas exchange imaging was performed at 1.5 T with a multi-echo spectroscopic imaging sequence. A CS reconstruction with an acceleration factor of 2 was compared retrospectively with conventional gridding reconstruction in a cohort of 16 healthy volunteers, 5 chronic obstructive pulmonary disease patients, and 23 patients who were hospitalized following COVID-19 infection. Metrics of comparison included normalized mean absolute error, mean gas exchange ratio, and red blood cell (RBC) image SNR. Dissolved 129Xe CS imaging with NA xenon was assessed in 4 healthy volunteers. RESULTS: CS reconstruction enabled acquisition time to be halved, and it reduced background noise. Median RBC SNR increased from 6 (2-18) to 11 (2-100) with CS, and there was strong agreement between CS and gridding mean ratio map values (R2 = 0.99). Image fidelity was maintained for gridding RBC SNR > 5, but below this, normalized mean absolute error increased nonlinearly with decreasing SNR. CS increased the mean SNR of NA 129Xe images 3-fold. CONCLUSION: CS reconstruction of dissolved 129Xe imaging improved image quality with decreased scan time, while preserving key gas exchange metrics. This will benefit patients with breathlessness and/or low gas transfer and shows promise for NA-dissolved 129Xe imaging.

3.
Anal Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254883

RESUMEN

129Xe NMR spectroscopy of polymers can provide important information on void spaces, sometimes called free volume, in polymers. Unfortunately, the spectroscopy's low sensitivity has limited its widespread use in both academic and industrial research. In order to overcome such a difficult situation, hyper-CEST method which employs hyperpolarization and CEST techniques, is examined after the introduction of recirculation and subtraction modes. Alongside the incorporated stopped-flow technique, these modes were very efficient in detecting very weak hidden signals from cellulose nanofiber (CNF) and silk fibroin (SF) films and in discussing the void space in these polymers. From the analysis of detailed saturation frequency dependence in the increment of 100 Hz, the chemical shifts of hidden peaks were successfully determined to give reasonable values for the size of void space in CNF and SF. Application on thermoplastic polyurethane film also supported our method of analysis. The subtraction mode was very efficient in judging the presence or absence of any peak at a fixed saturation frequency. These facts support that the mode will surely be useful in the future exploratory study of very weak hidden signals.

4.
Magn Reson Med ; 92(6): 2546-2559, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155454

RESUMEN

PURPOSE: To evaluate the feasibility and utility of a deep learning (DL)-based reconstruction for improving the SNR of hyperpolarized 129Xe lung ventilation MRI. METHODS: 129Xe lung ventilation MRI data acquired from patients with asthma and/or chronic obstructive pulmonary disease (COPD) were retrospectively reconstructed with a commercial DL reconstruction pipeline at five different denoising levels. Quantitative imaging metrics of lung ventilation including ventilation defect percentage (VDP) and ventilation heterogeneity index (VHI) were compared between each set of DL-reconstructed images and alternative denoising strategies including: filtering, total variation denoising and higher-order singular value decomposition. Structural similarity between the denoised and original images was assessed. In a prospective study, the feasibility of using SNR gains from DL reconstruction to allow natural-abundance xenon MRI was evaluated in healthy volunteers. RESULTS: 129Xe ventilation image SNR was improved with DL reconstruction when compared with conventionally reconstructed images. In patients with asthma and/or COPD, DL-reconstructed images exhibited a slight positive bias in ventilation defect percentage (1.3% at 75% denoising) and ventilation heterogeneity index (˜1.4) when compared with conventionally reconstructed images. Additionally, DL-reconstructed images preserved structural similarity more effectively than data denoised using alternative approaches. DL reconstruction greatly improved image SNR (greater than threefold), to a level that 129Xe ventilation imaging using natural-abundance xenon appears feasible. CONCLUSION: DL-based image reconstruction significantly improves 129Xe ventilation image SNR, preserves structural similarity, and leads to a minor bias in ventilation metrics that can be attributed to differences in the image sharpness. This tool should help facilitate cost-effective 129Xe ventilation imaging with natural-abundance xenon in the future.


Asunto(s)
Asma , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Pulmón , Imagen por Resonancia Magnética , Enfermedad Pulmonar Obstructiva Crónica , Relación Señal-Ruido , Isótopos de Xenón , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Estudios Prospectivos , Procesamiento de Imagen Asistido por Computador/métodos , Asma/diagnóstico por imagen , Adulto , Estudios Retrospectivos , Anciano , Estudios de Factibilidad
5.
J Cyst Fibros ; 23(5): 926-935, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997823

RESUMEN

RATIONALE: Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted 129Xe MRI is a non-invasive and validated measure of lung microstructure. In this work, we investigate microstructural changes in people with CF (pwCF) relative to age-matched, healthy subjects using comprehensive imaging and analysis involving pulmonary-function tests (PFTs), and 129Xe MRI. METHODS: 38 healthy subjects (age 6-40; 17.2 ± 9.5 years) and 39 pwCF (age 6-40; 15.6 ± 8.0 years) underwent 129Xe-diffusion MRI and PFTs. The distribution of diffusion measurements (i.e., apparent diffusion coefficients (ADC) and morphometric parameters) was assessed via linear binning (LB). The resulting volume percentages of bins were compared between controls and pwCF. Mean ADC and morphometric parameters were also correlated with PFTs. RESULTS: Mean whole-lung ADC correlated significantly with age (P < 0.001) for both controls and CF, and with PFTs (P < 0.05) specifically for pwCF. Although there was no significant difference in mean ADC between controls and pwCF (P = 0.334), age-adjusted LB indicated significant voxel-level diffusion (i.e., ADC and morphometric parameters) differences in pwCF compared to controls (P < 0.05). CONCLUSIONS: 129Xe diffusion MRI revealed microstructural abnormalities in CF lung disease. Smaller microstructural size may reflect compression from overall higher lung density due to interstitial inflammation, fibrosis, or other pathological changes. While elevated microstructural size may indicate emphysema-like remodeling due to chronic inflammation and infection.


Asunto(s)
Fibrosis Quística , Imagen de Difusión por Resonancia Magnética , Pruebas de Función Respiratoria , Isótopos de Xenón , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/fisiopatología , Masculino , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Adolescente , Pruebas de Función Respiratoria/métodos , Adulto , Niño , Alveolos Pulmonares/diagnóstico por imagen , Alveolos Pulmonares/patología
6.
Magn Reson Med Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38839300

RESUMEN

PURPOSE: Chronic obstructive pulmonary disease (COPD) is a complex multisystem disease associated with comorbidities outside the lungs. The aim of this study was to measure changes in metrics of pulmonary gas exchange function and brain tissue metabolism in a mouse model of COPD using hyperpolarized 129Xe (HP 129Xe) MRI/MR spectroscopy (MRS) and investigate the relationship between the metrics of lung and brain. METHODS: COPD phenotypes were induced in 15 mice by 6-week administration of cigarette smoke extract (CSE) and lipopolysaccharide (LPS). A separate negative control (NC) group was formed of 6 mice administered with saline for 6 weeks. After these 6-week administrations, the pulmonary gas exchange function parameter fD (%) and the rate constant, α (s-1), which are composed of the cerebral blood flow Fi and the longitudinal relaxation rate 1/T1i in brain tissue, were evaluated by HP 129Xe MRI/MRS. RESULTS: The fD of CSE-LPS mice was significantly lower than that of NC mice, which was in parallel with an increase in bronchial wall thickness. The α in the CSE-LPS mice decreased with the decrease of fD in contrast to the trend in the NC mice. To further elucidate the opposed trend, the contribution of T1i was separately determined by measuring Fi. The T1i in the CSE-LPS mice was found to correlate negatively with fD as opposed to the positive trend in the NC mice. The opposite trend in T1i between CSE-LPS and NC mice suggests hypoxia in the brain, which is induced by the impaired oxygen uptake as indicated by the reduced fD. CONCLUSION: This study demonstrates the feasibility of using HP 129Xe MRI/MRS to study pathological mechanisms of brain dysfunction in comorbidities with COPD.

7.
J Magn Reson Imaging ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935670

RESUMEN

BACKGROUND: Lung compliance, a biomarker of pulmonary fibrosis, is generally measured globally. Hyperpolarized 129Xe gas MRI offers the potential to evaluate lung compliance regionally, allowing for visualization of changes in lung compliance associated with fibrosis. PURPOSE: To assess global and regional lung compliance in a rat model of pulmonary fibrosis using hyperpolarized 129Xe gas MRI. STUDY TYPE: Prospective. ANIMAL MODEL: Twenty Sprague-Dawley male rats with bleomycin-induced fibrosis model (N = 10) and saline-treated controls (N = 10). FIELD STRENGTH/SEQUENCE: 7-T, fast low-angle shot (FLASH) sequence. ASSESSMENT: Lung compliance was determined by fitting lung volumes derived from segmented 129Xe MRI with an iterative selection method, to corresponding airway pressures. Similarly, lung compliance was obtained with computed tomography for cross-validation. Direction-dependencies of lung compliance were characterized by regional lung compliance ratios (R) in different directions. Pulmonary function tests (PFTs) and histological analysis were used to validate the pulmonary fibrosis model and assess its correlation with 129Xe lung compliance. STATISTICAL TESTS: Shapiro-Wilk tests, unpaired and paired t-tests, Mann-Whitney U and Wilcoxon signed-rank tests, and Pearson correlation coefficients. P < 0.05 was considered statistically significant. RESULTS: For the entire lung, the global and regional lung compliance measured with 129Xe gas MRI showed significant differences between the groups, and correlated with the global lung compliance measured using PFTs (global: r = 0.891; regional: r = 0.873). Additionally, for the control group, significant difference was found in mean regional compliance between areas, eg, 0.37 (0.32, 0.39) × 10-4 mL/cm H2O and 0.47 (0.41, 0.56) × 10-4 mL/cm H2O for apical and basal lung, respectively. The apical-basal direction R was 1.12 ± 0.09 and 1.35 ± 0.13 for fibrosis and control groups, respectively, indicating a significant difference. DATA CONCLUSION: Our findings demonstrate the feasibility of using hyperpolarized gas MRI to assess regional lung compliance. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

8.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860514

RESUMEN

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Asunto(s)
Algoritmos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Relación Señal-Ruido , Femenino , Imagenología Tridimensional/métodos , Adulto , Fantasmas de Imagen , Artefactos , Compresión de Datos/métodos , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Medios de Contraste/química
9.
Magn Reson Med ; 92(4): 1471-1483, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38726472

RESUMEN

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Anciano , Pulmón/diagnóstico por imagen , Adulto Joven , Intercambio Gaseoso Pulmonar , Factores Sexuales , Factores de Edad , Mediciones del Volumen Pulmonar , Eritrocitos
10.
Magn Reson Med ; 92(3): 956-966, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770624

RESUMEN

PURPOSE: To demonstrate the feasibility of zigzag sampling for 3D rapid hyperpolarized 129Xe ventilation MRI in human. METHODS: Zigzag sampling in one direction was combined with gradient-recalled echo sequence (GRE-zigzag-Y) to acquire hyperpolarized 129Xe ventilation images. Image quality was compared with a balanced SSFP (bSSFP) sequence with the same spatial resolution for 12 healthy volunteers (HVs). For another 8 HVs and 9 discharged coronavirus disease 2019 subjects, isotropic resolution 129Xe ventilation images were acquired using zigzag sampling in two directions through GRE-zigzag-YZ. 129Xe ventilation defect percent (VDP) was quantified for GRE-zigzag-YZ and bSSFP acquisitions. Relationships and agreement between these VDP measurements were evaluated using Pearson correlation coefficient (r) and Bland-Altman analysis. RESULTS: For 12 HVs, GRE-zigzag-Y and bSSFP required 2.2 s and 10.5 s, respectively, to acquire 129Xe images with a spatial resolution of 3.96 × 3.96 × 10.5 mm3. Structural similarity index, mean absolute error, and Dice similarity coefficient between the two sets of images and ventilated lung regions were 0.85 ± 0.03, 0.0015 ± 0.0001, and 0.91 ± 0.02, respectively. For another 8 HVs and 9 coronavirus disease 2019 subjects, 129Xe images with a nominal spatial resolution of 2.5 × 2.5 × 2.5 mm3 were acquired within 5.5 s per subject using GRE-zigzag-YZ. VDP provided by GRE-zigzag-YZ was strongly correlated (R2 = 0.93, p < 0.0001) with that generated by bSSFP with minimal biases (bias = -0.005%, 95% limit-of-agreement = [-0.414%, 0.424%]). CONCLUSION: Zigzag sampling combined with GRE sequence provides a way for rapid 129Xe ventilation imaging.


Asunto(s)
COVID-19 , Pulmón , Imagen por Resonancia Magnética , SARS-CoV-2 , Isótopos de Xenón , Humanos , COVID-19/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Imagenología Tridimensional/métodos , Estudios de Factibilidad
11.
Front Med (Lausanne) ; 11: 1342499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651062

RESUMEN

Introduction: Hyperpolarized 129Xe MRI and spectroscopy is a rapidly growing technique for assessing lung function, with applications in a wide range of obstructive, restrictive, and pulmonary vascular disease. However, normal variations in 129Xe measures of gas exchange across healthy subjects are not well characterized, presenting an obstacle to differentiating disease processes from the consequences of expected physiological heterogeneity. Here, we use multivariate models to evaluate the role of age, sex, and BMI in a range of commonly used 129Xe measures of gas exchange. Materials and methods: Healthy subjects (N = 40, 16F, age 44.3 ± 17.8 yrs., min-max 22-87 years) with no history of cardiopulmonary disease underwent 129Xe gas exchange MRI and spectroscopy. We used multivariate linear models to assess the associations of age, sex, and body mass index (BMI) with the RBC:Membrane (RBC:M), membrane to gas (Mem:Gas), and red blood cell to gas (RBC:Gas) ratios, as well as measurements of RBC oscillation amplitude and RBC chemical shift. Results: Age, sex, and BMI were all significant covariates in the RBC:M model. Each additional 10 years of age was associated with a 0.05 decrease in RBC:M (p < 0.001), each additional 10 points of BMI was associated with a decrease of 0.07 (p = 0.02), and males were associated with a 0.17 higher RBC:M than females (p < 0.001). For Mem:Gas, male sex was associated with a decrease and BMI was associated with an increase. For RBC:Gas, age was associated with a decrease and male sex was associated with an increase. RBC oscillation amplitude increased with age and RBC chemical shift was not associated with any of the three covariates. Discussion: 129Xe MRI and spectroscopy measurements in healthy subjects, particularly the widely used RBC:M measurement, exhibit heterogeneity associated in part with variations in subject age, sex, and BMI. Elucidating the contributions of these and other factors to 129Xe gas exchange measurements is a critical component for differentiating disease processes from expected variation in healthy subjects. Notably, the Mem:Gas and RBC chemical shift appear to be stable with aging, suggesting that unexplained deviations in these metrics may be signs of underlying abnormalities.

12.
Angew Chem Int Ed Engl ; 63(22): e202403771, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38551448

RESUMEN

The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.


Asunto(s)
Ferroptosis , Inmunoterapia , Imagen por Resonancia Magnética , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Isótopos de Xenón/química , Nanopartículas de Magnetita/química , Línea Celular Tumoral
13.
Magn Reson Med ; 92(3): 967-981, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38297511

RESUMEN

PURPOSE: Hyperpolarized xenon MRI suffers from heterogeneous coil bias and magnetization decay that obscure pulmonary abnormalities. Non-physiological signal variability can be mitigated by measuring and mapping the nominal flip angle, and by rescaling the images to correct for signal bias and decay. While flip angle maps can be calculated from sequentially acquired images, scan time and breath-hold duration are doubled. Here, we exploit the low-frequency oversampling of 2D-spiral and keyhole reconstruction to measure flip angle maps from a single acquisition. METHODS: Flip angle maps were calculated from two images generated from a single dataset using keyhole reconstructions and a Bloch-equation-based model suitable for hyperpolarized substances. Artifacts resulting from acquisition and reconstruction schemes (e.g., keyhole reconstruction radius, slice-selection profile, spiral-ordering, and oversampling) were assessed using point-spread functions. Simulated flip angle maps generated using keyhole reconstruction were compared against the paired-image approach using RMS error (RMSE). Finally, feasibility was demonstrated for in vivo xenon ventilation imaging. RESULTS: Simulations demonstrated accurate flip angle maps and B1-inhomogeneity correction can be generated with only 1.25-fold central-oversampling and keyhole reconstruction radius = 5% (RMSE = 0.460°). These settings also generated accurate flip angle maps in a healthy control (RSME = 0.337°) and a person with cystic fibrosis (RMSE = 0.404°) in as little as 3.3 s. CONCLUSION: Regional lung ventilation images with reduced impact of B1-inhomogeneity can be acquired rapidly by combining 2D-spiral acquisition, Bloch-equation-based modeling, and keyhole reconstruction. This approach will be especially useful for breath-hold studies where short scan durations are necessary, such as dynamic imaging and applications in children or people with severely compromised respiratory function.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Pulmón , Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/química , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Simulación por Computador , Algoritmos , Masculino , Femenino , Fantasmas de Imagen , Adulto , Contencion de la Respiración , Fibrosis Quística/diagnóstico por imagen
14.
Magn Reson Med ; 91(4): 1541-1555, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38084439

RESUMEN

PURPOSE: The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS: A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS: For undersampled acquisitions, a key radius of 0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS: Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Pulmonares , Humanos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Eritrocitos , Isótopos de Xenón
15.
NMR Biomed ; 37(4): e5078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086710

RESUMEN

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sensitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advantages in pulmonary function measurement and can provide promising biomarkers for the assessment of lung injuries. Herein, we employ hyperpolarized 129 Xe MRI and generate a number of imaging biomarkers to detect the pulmonary physiological and morphological changes during the progression of ALI in an animal model. We find the measured ratio of 129 Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is significantly lower in the ALI group on the second (0.32 ± 0.03, p = 0.004), seventh (0.23 ± 0.03, p < 0.001), and 14th (0.29 ± 0.04, p = 0.001) day after lipopolysaccharide treatment compared with that in the control group (0.41 ± 0.04). In addition, significant differences are also observed for RBC/TP measurements between the second and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018) in the ALI group after treatment. Besides RBC/TP, significant differences are also observed in the measured exchange time constant (T) on the second (p = 0.038) and seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC) and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and SVR: p = 0.019) after treatment in the ALI group compared with that in the control group. These findings indicate that the parameters measured with 129 Xe MR can detect the dynamic changes in pulmonary structure and function in an ALI animal model.


Asunto(s)
Lesión Pulmonar Aguda , Imagen por Resonancia Magnética , Animales , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Pulmón/patología , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/patología , Isótopos de Xenón/química , Biomarcadores
16.
Chemphyschem ; 24(23): e202300346, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37713677

RESUMEN

Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 µM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 µM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Animales , Bovinos , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Imagen Molecular
17.
Magn Reson Med ; 90(6): 2420-2431, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37526031

RESUMEN

PURPOSE: The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized 129 Xe MRI in neonates with BPD. METHODS: Neonatal intensive care patients with established BPD were recruited (N = 9) and imaged at a corrected gestational age of median:40.7 (range:37.1, 44.4) wk using a 1.5T neonatal scanner. 2D 129 Xe ventilation and diffusion-weighted images and dissolved phase spectroscopy were acquired, alongside 1 H 3D radial UTE. 129 Xe images were acquired during a series of short apneic breath-holds (˜3 s). 1 H UTE images were acquired during tidal breathing. Ventilation defects were manually identified and qualitatively compared to lung structures on UTE. ADCs were calculated on a voxel-wise basis. The signal ratio of the 129 Xe red blood cell (RBC) and tissue membrane (M) resonances from spectroscopy was determined. RESULTS: Spiral-based 129 Xe ventilation imaging showed good image quality and sufficient sensitivity to detect mild ventilation abnormalities in patients with BPD. 129 Xe ADC values were elevated above that expected given healthy data in older children and adults (median:0.046 [range:0.041, 0.064] cm2 s-1 ); the highest value obtained from an extremely pre-term patient. 129 Xe spectroscopy revealed a low RBC/M ratio (0.14 [0.06, 0.21]). CONCLUSION: We have demonstrated initial feasibility of 129 Xe lung MRI in neonates. With further data, the technique may help guide management of infant lung diseases in the neonatal period and beyond.


Asunto(s)
Displasia Broncopulmonar , Adulto , Recién Nacido , Niño , Humanos , Displasia Broncopulmonar/diagnóstico por imagen , Estudios de Factibilidad , Isótopos de Xenón , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
18.
Chemphyschem ; 24(19): e202300284, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37449974

RESUMEN

Ultra-low field nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) inherently suffer from a low signal-to-noise ratio due to the small thermal polarization of nuclear spins. Transfer of polarization from a pre-polarized spin system to a thermally polarized spin system via the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) could potentially be used to overcome this limitation. SPINOE is particularly advantageous at ultra-low magnetic field, where the transferred polarization can be several orders of magnitude higher than thermal polarization. Here we demonstrate direct detection of polarization transfer from highly polarized 129 Xe gas spins to 1 H spins in solution via SPINOE. At ultra-low field, where thermal nuclear spin polarization is close to background noise levels and where different nuclei can be simultaneously detected in a single spectrum, the dynamics of the polarization transfer can be observed in real time. We show that by simply bubbling hyperpolarized 129 Xe into solution, we can enhance 1 H polarization levels by a factor of up to 151-fold. While our protocol leads to lower enhancements than those previously reported under extreme Xe gas pressures, the methodology is easily repeatable and allows for on-demand enhanced spectroscopy. SPINOE at ultra-low magnetic field could also be employed to study 129 Xe interactions in solutions.

19.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511071

RESUMEN

Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).


Asunto(s)
Reacción de Maillard , Isótopos de Xenón , Animales , Ovinos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Hemoglobinas , Glucosa , Xenón , Pulmón
20.
Magn Reson Med ; 90(4): 1555-1568, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37246900

RESUMEN

PURPOSE: 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS: We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standard H b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0 ± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS: Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589 ± $$ \pm $$ 0.083 (mean ± $$ \pm $$ SD). CONCLUSION: MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Masculino , Femenino , Humanos , Adulto , Imagen por Resonancia Magnética/métodos , Hemoglobinas , Xenón , Eritrocitos , Intercambio Gaseoso Pulmonar , Gases , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA