RESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Asunto(s)
Inmunoterapia , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inmunoterapia/métodos , Nanopartículas/uso terapéutico , Nanopartículas/química , Femenino , AnimalesRESUMEN
BACKGROUND: Transient receptor potential vanilloid 2 (TRPV2) is a member of the TRP superfamily of non-specific cation channels with functionally diverse roles. We herein investigated the effects of TRPV2 on the expression of programmed cell death-ligand 1 (PD-L1) and its binding ability to programmed cell death-1 (PD-1) in gastric cancer (GC). METHODS: Knockdown (KD) experiments were performed on human GC cell lines using TRPV2 small-interfering RNA. The surface expression of PD-L1 and its binding ability to PD-1 were analyzed by flow cytometry. Eighty primary tissue samples were assessed by immunohistochemistry (IHC), and the relationships between IHC results, clinicopathological factors, and patient prognosis were analyzed. The molecular mechanisms underlying the effects of TRPV2 on the intracellular ion environment were also investigated. RESULTS: TRPV2-KD decreased the expression level of PD-L1 in NUGC4 and MKN7 cells, thereby inhibiting its binding to PD-1. A survival analysis revealed that 5-year overall survival rates were significantly lower in the TRPV2 high expression and PD-L1-positive groups. In IHC multivariate analysis of GC patients, high TRPV2 expression was identified as an independent prognostic factor. Furthermore, a positive correlation was observed between the expression of TRPV2 and PD-L1. An immunofluorescence analysis showed that TRPV2-KD decreased the intracellular concentration of calcium ([Ca2+]i). Treatment with ionomycin/PMA (phorbol 12-myristate 13-acetate), which increased [Ca2+]i, upregulated the protein expression of PD-L1 and promoted its binding to PD-1. CONCLUSIONS: The surface expression of PD-L1 and its binding ability to PD-1 in GC were regulated by TRPV2 through [Ca2+]i, indicating the potential of TRPV2 as a biomarker and target of immune checkpoint blockage for GC.
Asunto(s)
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Gástricas/patología , Análisis de Supervivencia , Canales Catiónicos TRPVRESUMEN
T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.
Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Linfocitos T , Cobre , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Inmunoterapia/métodos , Antígenos de Neoplasias , Células Dendríticas , Línea Celular TumoralRESUMEN
Introduction: Bladder cancer (BLCA) is a highly heterogeneous disease influenced by the tumor microenvironment, which may affect patients' response to immune checkpoint blockade therapy. Therefore, identifying molecular markers and therapeutic targets to improve treatment is essential. In this study, we aimed to investigate the prognostic significance of LRP1 in BLCA. Methods: We analyzed TCGA and IMvigor210 cohorts to investigate the relationship of LRP1 with BLCA prognosis. We utilized gene mutation analysis and enrichment to identify LRP1-associated mutated genes and biological processes. Deconvolution algorithms and single-cell analysis were used to understand the tumor-infiltrated cells and biological pathways associated with LRP1 expression. Immunohistochemistry was conducted to validate the bioinformatics analysis. Results: Our study revealed that LRP1 was an independent risk factor for overall survival in BLCA patients and was associated with clinicopathological features and FGFR3 mutation frequency. Enrichment analysis demonstrated that LRP1 was involved in extracellular matrix remodeling and tumor metabolic processes. Furthermore, the ssGSEA algorithm revealed that LRP1 was positively correlated with the activities of tumor-associated pathways. Our study also found that high LRP1 expression impaired patients' responsiveness to ICB therapy in BLCA, which was predicted by TIDE prediction and validated by IMvigor210 cohort. Immunohistochemistry confirmed the expression of LRP1 in Cancer-Associated Fibroblasts (CAFs) and macrophages in the tumor microenvironment of BLCA. Discussion: Our study suggests that LRP1 may be a potential prognostic biomarker and therapeutic target in BLCA. Further research on LRP1 may improve BLCA precision medicine and enhance the efficacy of immune checkpoint blockade therapy.
Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Neoplasias de la Vejiga Urinaria , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Pronóstico , Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Vejiga Urinaria/genética , Macrófagos , Microambiente TumoralRESUMEN
Programmed death-ligand 1 (PD-L1), expressed on the surface of tumor cells, can bind to programmed cell death-1 (PD-1) on T cells. The interaction of PD-1 and PD-L1 can inhibit T-cell responses by decreasing T-cell activity and accelerating their apoptosis. Various cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T-cell immunity, and immunotherapies targeting the PD-1/PD-L1 axis have been shown to exert remarkable anti-tumor effects; however, not all tumor patients benefit from these therapies. Therefore, study of the mechanisms regulating PD-L1 expression are imperative. In this review, we explore regulation of PD-L1 expression in the contexts of gene transcription, signaling pathways, histone modification and remodeling, microRNAs, long noncoding RNAs, and post-translational modification. Current developments in studies of agents that block PD-L1 and correlations between immunotherapies targeting PD-1/PD-L1 and PD-L1 expression are also summarized. Our review will assist in understanding of PD-L1 expression regulation and discusses the implications of reported findings in cancer diagnosis and immunotherapy.
RESUMEN
BACKGROUND: Stonin1 (STON1) is an endocytic protein but its role in cancer remains unclear. Here, we investigated the immune role of STON1 in kidney renal clear cell carcinoma (KIRC). METHODS: We undertook bioinformatics analyses of the expression and clinical significance of STON1 in KIRC through a series of public databases, and the role of STON1 in the tumor microenvironment and the predictive value for immunotherapy and targeted treatment in KIRC were identified with R packages. STON1 expression was validated in clinical KIRC tissues as well as in KIRC and normal renal tubular epithelial cells. RESULTS: Through public databases, STON1 mRNA was found to be significantly downregulated in KIRC compared with normal controls, and decreased STON1 was related to grade, TNM stage, distant metastasis and status of KIRC patients. Compared with normal controls, STON1 was found to be downregulated in KIRC tissues and cell lines. Furthermore, OncoLnc, Kaplan-Meier, and GEPIA2 analyses also suggested that KIRC patients with high STON1 expression had better overall survival. The high STON1 group with enriched immune cells had a more favorable prognosis than the low STON1 group with decreased immune cells. Single sample Gene Set Enrichment Analysis and Gene Set Variation Analysis indicated that STON1 creates an immune non-inflamed phenotype in KIRC. Moreover, STON1 was positively associated with mismatch repair proteins and negatively correlated with tumor mutational burden. Furthermore, Single sample Gene Set Enrichment Analysis algorithm and Pearson analysis found that the low STON1 group was more sensitive to immune checkpoint blockage whereas the high STON1 group was relatively suitable for targeted treatment. CONCLUSIONS: Decreased STON1 expression in KIRC leads to clinical progression and poor survival. Mechanically, low STON1 expression is associated with an aberrant tumor immune microenvironment. Low STON1 is likely to be a favorable indicator for immunotherapy response but adverse indicator for targeted therapeutics in KIRC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Microambiente Tumoral/genética , Carcinoma de Células Renales/genética , Inmunoterapia , Neoplasias Renales/genética , Riñón , PronósticoRESUMEN
Background: Patients with v-raf murine sarcoma viral oncogene homolog B1 (BRAF)V600E-mutant non-small cell lung cancer (NSCLC) benefit from treatment with a combination of BRAF and mitogen-activated protein kinase (MEK) inhibitors, but resistance and disease progression develop in most patients. Pre-clinical studies and case studies of melanoma indicate that acquired resistance to BRAF inhibition may be reversible. However, studies on the effects of dabrafenib-trametinib (D/T) re-challenge for relapse in NSCLC are limited. Case Description: A 58-year-old Chinese woman with a history of smoking and hypertension was diagnosed with stage IV B lung adenocarcinoma with metastasis. The targeted next-generation sequencing (NGS) of the patient's lung tumor biopsy tissues revealed the presence of a BRAF V600E mutation with an allele frequency (AF) of 30.54%. The patient was treated with cytotoxic chemotherapy (the 1st line), D/T targeted therapy (the 2nd line), and immune checkpoint inhibitor monotherapy (pembrolizumab, the 3rd line), all of which achieved a partial response (PR) that lasted for a total of 8 months. The 2nd NGS analysis of the lung tissue specimens revealed the presence of a BRAF V600E mutation (AF =18.41%) without mutations, which was potentially involved in the resistance to BRAF/MEK inhibition. At the 4th line, she subsequently re-challenged D/T, and achieved a 4th PR, lasting for 5 months. The 3rd NGS analysis revealed the retention of the BRAF V600E mutation (AF =0.39%). Her treatment was switched to pembrolizumab (the 5th line), and the disease remained stable for another 6 months as of the last follow-up in November 2021. She didn't experience any adverse events throughout the treatment. Conclusions: Our findings suggest that the re-challenge of D/T and immune checkpoint blockage therapies offer another therapeutic option for NSCLC patients with the BRAF V600E-mutant who have received extensive prior treatments. In addition, our advanced NSCLC patient with the BRAF V600E-mutant also derived long-term clinical benefits from initial chemotherapy, molecular-targeted therapy, and immunotherapy.
RESUMEN
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients' eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Apoptosis , Antígeno B7-H1/metabolismo , Carcinógenos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Transicionales/tratamiento farmacológico , Humanos , Ligandos , Receptor de Muerte Celular Programada 1 , Vejiga UrinariaRESUMEN
Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Transcriptoma , Adenosina/análogos & derivados , Adenosina/química , Animales , Humanos , Neoplasias/inmunología , Neoplasias/patología , Procesamiento Postranscripcional del ARNRESUMEN
During the COVID-19 pandemic, it is important to assure the safety and management of cancer patients. Despite preliminary studies revealed that patients with cancer are more susceptible to infection and have poorer prognosis than other infected patients without cancer, mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. So, we have some comments about the pathogenesis attributed to the COVID-19 disease and cancer relationship and determination of subgroups in this and oncoming studies. Variable effects of anticancer treatments on the patient's immune system are yet to be elucidated. On the other hand, the effect of SARS-CoV-2 virus on tumor microenvironment or immune responses in cancer is not yet fully proven. Very recently, Challenor and her colleague reported a case with classical Hodgkin lymphoma with stage IIIs disease, which went into remission without corticosteroid or immunochemotherapy. They assumed that the putative mechanisms of action include cross-reactivity of pathogen-specific T cells with tumor antigens and natural killer cell activation by inflammatory cytokines produced in response to infection. During the course of COVID-19 disease, immune checkpoint blockade effect might be induced naturally.
Asunto(s)
COVID-19/inmunología , Neoplasias/inmunología , SARS-CoV-2/inmunología , Reacciones Cruzadas , Citocinas/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
The function of ANO9 in gastrointestinal cancer remains unclear. We investigated the biological behaviors and clinical prognostic values of ANO9 in gastric cancer (GC). Knockdown experiments were performed on human GC cell lines using ANO9 siRNA. Eighty-four primary tissue samples from patients with advanced GC were examined immunohistochemically (IHC). Knockdown of ANO9 reduced the progression of cancer cells in MKN7 and MKN74 cells. A microarray analysis revealed that ANO9 regulated PD-L2 via interferon (IFN)-related genes. We confirmed using flow cytometry that the depletion of ANO9 reduced the binding ability to PD-1 by downregulating the expression of PD-L2 in MKN7 and MKN74 cells. IHC revealed a correlation between the expression of ANO9 and PD-L2 and also that the strong expression of ANO9 was an independent poor prognostic factor in patients with advanced GC. The present results indicate that ANO9 regulates PD-L2 and binding ability to PD-1 via IFN-related genes in GC. Therefore, ANO9 has potential as a biomarker and target of immune checkpoint blockage (ICB) for GC.
Asunto(s)
Anoctaminas/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Neoplasias Gástricas/genética , Anciano , Anoctaminas/antagonistas & inhibidores , Anoctaminas/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/inmunología , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Estudios de Seguimiento , Gastrectomía , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferones/metabolismo , Masculino , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Proteínas de Transferencia de Fosfolípidos/genética , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Estómago/patología , Estómago/cirugía , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/terapia , Tasa de SupervivenciaRESUMEN
Rationale: PD1/PD-L1 immune checkpoint inhibitors have shown promising results for several malignancies. However, PD1/PD-L1 signaling and its therapeutic significance remains largely unknown in intrahepatic cholangiocarcinoma (ICC) cases with complex etiology. Methods: We investigated the expression and clinical significance of CD3 and PD1/PD-L1 in 320 ICC patients with different risk factors. In addition, we retrospectively analyzed 7 advanced ICC patients who were treated with PD1 inhibitor. Results: The cohort comprised 233 patients with HBV infection, 18 patients with hepatolithiasis, and 76 patients with undetermined risk factors. PD-L1 was mainly expressed in tumor cells, while CD3 and PD1 were expressed in infiltrating lymphocytes of tumor tissues. PD1/PD-L1 signals were activated in tumor tissues, and expression was positively correlated with HBV infection and lymph node invasion. More PD1+ T cells and higher PD-L1 expression were observed in tumor tissues of ICC patients with HBV infection compared to patients with hepatolithiasis or undetermined risk factors. More PD1+ T cells and/or high PD-L1 expression negatively impacted the prognosis of patients with HBV infection but not those with hepatolithiasis. Multivariate analysis showed PD1/PD-L1 expression was an independent indicator of ICC patient prognosis. Advanced ICC patients with HBV infection and less PD1+ T cells tended to have good response to anti-PD1 therapy. Conclusion: Hyperactivated PD1/PD-L1 signals in tumor tissues are a negative prognostic marker for ICCs after resection. HBV infection- and hepatolithiasis-related ICCs have distinct PD1/PD-L1 profiles. Further, PD1+ T cells could be used as a biomarker to predict prognosis and assay the efficiency of anti-PD1 immunotherapy in ICC patients with HBV infection.
Asunto(s)
Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Receptor de Muerte Celular Programada 1/genética , Adulto , Anciano , Colangiocarcinoma/metabolismo , Colangiocarcinoma/virología , Femenino , Virus de la Hepatitis B/fisiología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/metabolismo , Estudios Retrospectivos , Factores de RiesgoRESUMEN
Treatment options for recurrent/metastatic sinonasal cancer (RMSNC) patients are limited. We present two cases with RMSNC treated with a combination of immune checkpoint blockade and hypo-fractionated stereotactic radiotherapy (HSRT). Case 1 presented with RMSNC three months after the primary treatment. The patient progressed under first-line chemotherapy and pembrolizumab was offered. The disease progressed after the sixth cycle. We performed reirradiation with HSRT to the primary site. Case 2 presented with local recurrence eight years after the primary treatment for maxillary sinus cancer. He refused surgery and chemotherapy and was offered nivolumab treatment. After two doses, we performed reirradiation with HSRT. Case 1 showed regression at both the local and the metastatic sites after radiotherapy. The second patient's symptoms resolved completely three months after radiotherapy. The HSRT and immune checkpoint blockade combination is a promising treatment option for patients with RMSNC.
RESUMEN
Immune checkpoint inhibitors have been identified as breakthrough treatment in melanoma given its dramatic response to PD-1/PD-L1 blockade. This is likely to extend to many other cancers as hundreds of clinical trials are being conducted or proposed using this exciting modality of therapy in a variety of malignancies. While immune checkpoint inhibitors have been extensively studied in melanoma and more recently in lung cancer, little is known regarding immune checkpoint blockade in other cancers. This review will focus on the tumor immune microenvironment, the expression of PD-1/PD-L1 and the effect of immune modulation using PD-1 or PD-L1 inhibitors in patients with head and neck, prostate, urothelial, renal, breast, gastrointestinal and lung cancers.