Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39098022

RESUMEN

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Hematológicas , Mutación , Humanos , Neoplasias Hematológicas/genética , Transformación Celular Neoplásica/genética , Infecciones , Inmunidad Innata , Síndromes Mielodisplásicos/genética , Animales , Estrés Fisiológico
2.
Adv Healthc Mater ; : e2401904, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101289

RESUMEN

Immunogenic cell death (ICD) could activate anti-tumor immune responses, which is highly attractive for improving cancer treatment effectiveness. Here, this work reports a multifunctional arsenic(III) allosteric inhibitor Mech02, which induces excessive accumulation of 1O2 through sensitized biocatalytic reactions, leading to cell pyroptosis and amplified ICD effect. After Mech02 is converted to Mech03, it could actualize stronger binding effects on the allosteric pocket of pyruvate kinase M2, further interfering with the anaerobic glycolysis pathway of tumors. The enhanced DNA damage triggered by Mech02 and the pyroptosis of cancer stem cells provide assurance for complete tumor clearance. In vivo experiments prove nanomicelle Mech02-HA NPs is able to activate immune memory effects and raise the persistence of anti-tumor immunity. In summary, this study for the first time to introduce the arsenic(III) pharmacophore as an enhanced ICD effect initiator into nitrogen mustard, providing insights for the development of efficient multimodal tumor therapy agents.

3.
Sci Rep ; 14(1): 18882, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143261

RESUMEN

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens. We delivered single or multiple administrations of CpG-ODN to birds and mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis of peripheral blood mononuclear cells were quantified using Seahorse XFp. Next, chickens were administered with CpG-ODN twice at 1 and 4 day of age and challenged with Escherichia coli at 27 days of age. The CpG-ODN administered groups had significantly higher mitochondrial OXPHOS until 21 days of age while cellular glycolysis gradually declined by 14 days of age. The group administered with CpG-ODN twice at 1 and 4 days of age had significantly higher survival, lower clinical score and bacterial load following challenge with E. coli at 27 d of age. This study demonstrated the induction of trained immunity in broiler chickens following administration of CpG-ODN twice during the first 4 days of age to protect birds against E. coli septicemia at 27 days of age.


Asunto(s)
Pollos , Infecciones por Escherichia coli , Escherichia coli , Oligodesoxirribonucleótidos , Enfermedades de las Aves de Corral , Sepsis , Animales , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Pollos/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Sepsis/inmunología , Sepsis/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Inmunidad Innata/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Fosforilación Oxidativa , Inmunidad Entrenada
4.
Heliyon ; 10(14): e34577, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149061

RESUMEN

SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.

5.
FASEB J ; 38(16): e23893, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39177943

RESUMEN

Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.


Asunto(s)
Linfocitos B , Médula Ósea , Memoria Inmunológica , Leishmania infantum , Leishmaniasis Visceral , Linfopoyesis , Bazo , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Animales , Bazo/inmunología , Bazo/parasitología , Leishmania infantum/inmunología , Leishmania infantum/fisiología , Ratones , Médula Ósea/parasitología , Médula Ósea/inmunología , Linfocitos B/inmunología , Femenino , Ratones Endogámicos BALB C
6.
Vaccines (Basel) ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39066374

RESUMEN

The mRNA vaccine against COVID-19 protects against severe disease by the induction of robust humoral and cellular responses. Recent studies have shown the capacity of some vaccines to induce enduring non-specific innate immune responses by the induction of trained immunity, augmenting protection against unrelated pathogens. This study aimed to assess whether the mRNA vaccine BNT162b2 can induce lasting non-specific immune responses in myeloid cells following a three-dose vaccination scheme. In a sample size consisting of 20 healthy individuals from Romania, we assessed inflammatory proteins using the Olink® Target 96 Inflammation panel, as well as ex vivo cytokine responses following stimulations with unrelated PRR ligands. We assessed the vaccine-induced non-specific systemic inflammation and functional adaptations of myeloid cells. Our results revealed the induction of a stimulus- and cytokine-dependent innate immune memory phenotype that became apparent after the booster dose and was maintained eight months later in the absence of systemic inflammation.

7.
Adv Exp Med Biol ; 1459: 115-141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017842

RESUMEN

Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.


Asunto(s)
Diferenciación Celular , Humanos , Animales , Hipoxia de la Célula , Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos/metabolismo , Linfocitos/inmunología , Hipoxia/inmunología , Hipoxia/metabolismo , Oxígeno/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043180

RESUMEN

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Asunto(s)
Lesiones Encefálicas , Inmunidad Innata , Memoria Inmunológica , Inflamación , Interleucina-1beta , Ratones Endogámicos C57BL , Monocitos , Animales , Ratones , Interleucina-1beta/metabolismo , Lesiones Encefálicas/inmunología , Humanos , Masculino , Monocitos/metabolismo , Monocitos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/inmunología , Cardiopatías/inmunología , Femenino , Receptores CCR2/metabolismo , Fibrosis , Epigénesis Genética , Inmunidad Entrenada
9.
Proc Natl Acad Sci U S A ; 121(29): e2400413121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976741

RESUMEN

Trained immunity is characterized by epigenetic and metabolic reprogramming in response to specific stimuli. This rewiring can result in increased cytokine and effector responses to pathogenic challenges, providing nonspecific protection against disease. It may also improve immune responses to established immunotherapeutics and vaccines. Despite its promise for next-generation therapeutic design, most current understanding and experimentation is conducted with complex and heterogeneous biologically derived molecules, such as ß-glucan or the Bacillus Calmette-Guérin (BCG) vaccine. This limited collection of training compounds also limits the study of the genes most involved in training responses as each molecule has both training and nontraining effects. Small molecules with tunable pharmacokinetics and delivery modalities would both assist in the study of trained immunity and its future applications. To identify small molecule inducers of trained immunity, we screened a library of 2,000 drugs and drug-like compounds. Identification of well-defined compounds can improve our understanding of innate immune memory and broaden the scope of its clinical applications. We identified over two dozen small molecules in several chemical classes that induce a training phenotype in the absence of initial immune activation-a current limitation of reported inducers of training. A surprising result was the identification of glucocorticoids, traditionally considered immunosuppressive, providing an unprecedented link between glucocorticoids and trained innate immunity. We chose seven of these top candidates to characterize and establish training activity in vivo. In this work, we expand the number of compounds known to induce trained immunity, creating alternative avenues for studying and applying innate immune training.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Inmunidad Innata , Bibliotecas de Moléculas Pequeñas , Animales , Ratones , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunidad Innata/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Ratones Endogámicos C57BL , Memoria Inmunológica/efectos de los fármacos , Inmunidad Entrenada
10.
Cancer Biol Ther ; 25(1): 2365452, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38860746

RESUMEN

MIBC is a highly lethal disease, and the patient survival rate has not improved significantly over the last decades. UPPL is a cell line that can be used to recapitulate the luminal-like molecular subtype of bladder cancer and to discover effective treatments to be translated in patients. Here, we investigate the effects of combinational treatments of radiotherapy and immunotherapy in this recently characterized UPPL tumor-bearing mice. We first characterized the baseline tumor microenvironment and the effect of radiation, anti-PD-L1, and combinatorial treatments. Then, the mice were re-challenged with a second tumor (rechallenged tumor) in the contralateral flank of the first tumor to assess the immunological memory. Radiation slowed down the tumor growth. All treatments also decreased the neutrophil population and increased the T cell population. Anti-PD-L1 therapy was not able to synergize with radiation to further delay tumor growth. Furthermore, none of the treatments were able to generate immune memory. The treatments were not sufficient to induce a significant and lasting pool of memory cells. We show here that anti-PD-L1 treatment added to radiotherapy was not enough to achieve T cell-mediated memory in UPPL tumors. Stronger T cell activation signals may be required to enhance radiation efficacy in luminal-like bladder cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Memoria Inmunológica , Neoplasias de la Vejiga Urinaria , Animales , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/patología , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral/inmunología , Modelos Animales de Enfermedad , Línea Celular Tumoral , Femenino , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Terapia Combinada/métodos
11.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895229

RESUMEN

Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis, but this is primarily based on analysis of circulating and not tissue-resident memory (TRM) subsets. Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Using inducible deletion, we found that Il7ra loss had only a modest effect on persistence of circulating memory and TRM subsets and that IL-7Rα was primarily required for normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including TRM populations previously described as IL-15-independent. In the absence of IL-15 signaling, IL-7Rα was upregulated, and loss of IL-7Rα signaling reduced proliferation in response to IL-15, suggesting cross-regulation in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.

12.
Front Immunol ; 15: 1397521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915407

RESUMEN

The innate immune system of insects can respond more swiftly and efficiently to pathogens based on previous experience of encountering antigens. The understanding of molecular mechanisms governing immune priming, a form of immune memory in insects, including its transgenerational inheritance, remains elusive. It is still unclear if the enhanced expression of immune genes observed in primed insects can persist and be regulated through changes in chromatin structure via epigenetic modifications of DNA or histones, mirroring observations in mammals. Increasing experimental evidence suggests that epigenetic changes at the level of DNA/RNA methylation and histone acetylation can modulate the activation of insects' immune responses to pathogen exposure. Moreover, transgenerational inheritance of certain epigenetic modifications in model insect hosts can influence the transmission of pre-programmed immune responses to the offspring, leading to the development of evolved resistance. Epigenetic research in model insect hosts is on the brink of significant progress in the mechanistic understanding of chromatin remodeling within innate immunity, particularly the direct relationships between immunological priming and epigenetic alterations. In this review, we discuss the latest discoveries concerning the involvement of DNA methylation and histone acetylation in shaping the development, maintenance, and inheritance of immune memory in insects, culminating in the evolution of resistance against pathogens.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Memoria Inmunológica , Insectos , Animales , Insectos/inmunología , Histonas/metabolismo , Inmunidad Innata , Ensamble y Desensamble de Cromatina , Acetilación
15.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932404

RESUMEN

The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.

16.
Biomaterials ; 311: 122662, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38878482

RESUMEN

Intrinsic lactate retention of chemically- or genetically-engineered bacteria therapy aggravates tumor immunosuppression, which will collaborate with immune escape to cause immunological surveillance failure. To address them, sonocatalytic oncolysis Escherichia coli (E.coli) that chemically chelated anti-CD24 and TiO1+x have been engineered to blockade CD24-siglec10 interaction, regulate microbiota colonization and curb its lactate metabolism, which are leveraged to revitalize immunological surveillance and repress breast cancer. The chemically-engineered E.coli inherited their parent genetic information and expansion function. Therefore, their intrinsic hypoxia tropism and CD24 targeting allow them to specifically accumulate and colonize in solid breast cancer to lyse tumor cells. The conjugated CD24 antibody is allowed to blockade CD24-Siglec10 signaling axis and revitalize immunological surveillance. More significantly, the chelated TiO1+x sonosensitizers produce ROS to render bacteria expansion controllable and curb immunosuppression-associated lactate birth that are usually neglected. Systematic experiments successfully vlaidate hypoxia-objective active targeting, sonocatalytic therapy, microbiota expansion-enabled oncolysis, CD24-Siglec10 communication blockade and precise microbiota abundance & lactate metabolism attenuations. These actions contribute to the potentiated anti-tumor immunity and activated anti-metastasis immune memory against breast cancer development. Our pioneering work provide a route to sonocatalytic cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama , Antígeno CD24 , Escherichia coli , Ácido Láctico , Animales , Femenino , Antígeno CD24/metabolismo , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Escherichia coli/metabolismo , Humanos , Vigilancia Inmunológica , Ratones , Línea Celular Tumoral , Microbiota , Ratones Endogámicos BALB C , Escape del Tumor
17.
Vaccines (Basel) ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38793734

RESUMEN

Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.

18.
Front Immunol ; 15: 1393283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742111

RESUMEN

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Asunto(s)
Endotoxinas , Tolerancia Inmunológica , Inmunidad Innata , Memoria Inmunológica , Humanos , Animales , Endotoxinas/inmunología , Inflamación/inmunología , Inmunidad Adaptativa , Inmunidad Entrenada
19.
Curr Res Insect Sci ; 5: 100085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779142

RESUMEN

There is a growing body of evidence that invertebrates can generate improved secondary responses after a primary challenge. This immunological memory can be primed by a range of pathogens, including bacteria. The generation of immunological memory has been demonstrated in mosquitoes, with the memory primed by a range of initial stimuli. This study aimed to examine whether insecticide resistance affects the capacity to generate immunological memory. The primary hypothesis was tested by examining the capacity of genetically related laboratory-reared Anopheles arabiensis strains that differ by insecticide resistant phenotype to generate immunological memory. The competing hypothesis tested was that the bacterial virulence was the key determinant in generating immunological memory. Immune memory was generated in F1 females but not males. Immunological memory was demonstrated in both laboratory strains, but the efficacy differed by the insecticide resistant phenotype of the strain. An initial oral challenge provided by a blood meal resulted generated better memory than an oral challenge by sugar. The efficacy of memory generation between the two bacterial strains differed between the two mosquito strains. Regardless of the challenge, the two strains differed in their capacity to generate memory. This study therefore demonstrated that insecticide resistant phenotype affected the capacity of the two strains to generate immunological memory. Although this study needs to be replicated with wild mosquitoes, it does suggest that a potential role for insecticide resistance in the functioning of the immune system and memory generation of An. arabiensis.

20.
Infect Dis (Lond) ; : 1-19, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805304

RESUMEN

BACKGROUND: SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES: We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS: Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS: We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION: This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA