Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Gac Med Mex ; 160(2): 128-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116861

RESUMEN

Humans are exposed every day to innumerable external stimuli, both environmental and microbial. Immunological memory recalls each specific stimulus and mounts a secondary response that is faster and of a larger magnitude than the primary response; this process constitutes the basis for vaccine development. The COVID-19 pandemic offers a unique opportunity to study the development of immune memory against an emergent microorganism. Memory T cells have an important role in the resolution of COVID-19, and they are key pillars of immunological memory. In this review, we summarize the main findings regarding anti-SARS-CoV-2 memory T cells after infection, after vaccination, and after the combination of these two events ("hybrid immunity"), and analyze how these cells can contribute to long-term protection against the infection with SARS-CoV-2 variants.


Los humanos se exponen cada día a innumerables estímulos externos, tanto ambientales como microbianos. La memoria inmunológica registra de manera específica un estímulo y articula una respuesta secundaria más rápida y de mayor magnitud que la respuesta primaria; este proceso constituye la base del desarrollo de vacunas. La pandemia de COVID-19 ofreció la oportunidad de estudiar el desarrollo de la memoria inmunológica contra un microorganismo emergente. Las células T de memoria tienen un papel importante en la resolución de COVID-19 y son pilares importantes de la memoria inmunológica. En esta revisión se resumen los principales hallazgos de la respuesta de las células T de memoria contra la infección por SARS-CoV-2, a la vacunación o a la combinación de ambos procesos ("inmunidad híbrida"), y se discute cómo estas células pueden contribuir a la protección a largo plazo contra distintas variantes del virus.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Memoria Inmunológica , Células T de Memoria , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Memoria Inmunológica/inmunología , Células T de Memoria/inmunología , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología
2.
Adv Mater ; : e2408473, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212208

RESUMEN

Treatment of osteomyelitis is clinically challenging with low therapeutic efficacy and high risk of recurrence owing to the immunosuppressive microenvironment. Existing therapies are limited by drug concentration and single regulatory effect on the immune network, and emphasize the role of anti-inflammatory effects in reducing osteoclast rather than the role of proinflammatory effects in accelerating infection clearance, which is not conducive to complete bacteria elimination and recurrence prevention. Herein, a direct-current triboelectric nanogenerator (DC-TENG) is established to perform antibacterial effects and modulate immunological properties of infectious microenvironments of osteomyelitis through electrical stimulation, namely triboelectric immunotherapy. Seeing from the results, the triboelectric immunotherapy successfully activates polarization to proinflammatory (M1) macrophages in vitro, accompanied by satisfying direct antibacterial effects. The antibacterial and osteogenic abilities of triboelectric immunotherapy are verified in rat cranial osteomyelitis models. The effects on the polarization and differentiation of immune-related cells in vivo are investigated by establishing in situ tibial osteomyelitis models and immunosurveillance models in C57 mice respectively, indicating the ability of activating immunity and producing immunological memory for in situ infection and secondary recurrence, thus accelerating healing and preventing relapse. This study provides an efficient, long-acting, multifunctional, and wearable triboelectric immunotherapy strategy for drug-free osteomyelitis treatment systems.

3.
J Infect Dis ; 230(1): e30-e33, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052732

RESUMEN

Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.


Asunto(s)
Anticuerpos Antivirales , Médula Ósea , COVID-19 , Células Plasmáticas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , Células Plasmáticas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Masculino , Persona de Mediana Edad , Femenino , Médula Ósea/virología , Adulto , Inmunoglobulina G/sangre , Anciano
4.
Biomedicines ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39062042

RESUMEN

The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.

6.
Methods Mol Biol ; 2826: 95-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017888

RESUMEN

Immunological memory, which sets the foundation for the adaptive immune response, plays a key role in disease protection and prevention. Obtaining a deeper understanding of the mechanisms underlying this phenomenon can aide in research aimed to improve vaccines and therapies. Memory B cells (MBCs) are a fundamental component of immunological memory but can exist in rare populations that prove challenging to study. By combining fluorescent antigen tetramers with multiple enrichment processes, a highly streamlined method for identifying and sorting antigen-specific MBCs from human blood and lymphoid tissues can be achieved. With the output of this process being viable cells, there is a multitude of downstream operations that can be used in conjunction with the antigen-specific cell sorting outlined in this chapter. Single-cell RNA-sequencing paired with B cell repertoire sequencing, which can be linked to distinct antigens in a high-throughput fashion, is a downstream application widely used in disease and vaccination research. Incorporation of this protocol can lead to a variety of applications and a diversity of outcomes aiding in a deeper understanding of how immunological memory not only forms but is recalled and impacted by infection and vaccination.


Asunto(s)
Antígenos , Memoria Inmunológica , Células B de Memoria , Humanos , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Antígenos/inmunología , Análisis de la Célula Individual/métodos , Separación Celular/métodos , Citometría de Flujo/métodos
7.
Immunol Invest ; : 1-10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994913

RESUMEN

INTRODUCTION: Memory CD8+ T cells are essential for long-term immune protection in viral infections, including COVID-19. METHODS: This study examined the responses of CD8+ TEM, TEMRA, and TCM subsets from unvaccinated individuals who had recovered from mild and severe COVID-19 by flow cytometry. RESULTS AND DISCUSSION: The peptides triggered a higher frequency of CD8+ TCM cells in the recovered mild group. CD8+ TCM and TEM cells showed heterogeneity in CD137 expression between evaluated groups. In addition, a predominance of CD137 expression in naïve CD8+ T cells, TCM, and TEM was observed in the mild recovered group when stimulated with peptides. Furthermore, CD8+ TCM and TEM cell subsets from mild recovered volunteers had higher TNF-α expression. In contrast, the expression partner of IFN-γ, IL-10, and IL-17 indicated an antiviral signature by CD8+ TEMRA cells. These findings underscore the distinct functional capabilities of each memory T cell subset in individuals who have recovered from COVID-19 upon re-exposure to SARS-CoV-2 antigens.

8.
Cell Rep Med ; 5(7): 101655, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019010

RESUMEN

Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Peróxido de Hidrógeno , Macaca mulatta , Vacunas de Productos Inactivados , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Vacunas de Productos Inactivados/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas Atenuadas/inmunología , Chlorocebus aethiops , Células Vero , Humanos
9.
Immunity ; 57(8): 1848-1863.e7, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38889716

RESUMEN

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.


Asunto(s)
Centro Germinal , Memoria Inmunológica , Células B de Memoria , Mitocondrias , Animales , Mitocondrias/metabolismo , Mitocondrias/inmunología , Ratones , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Centro Germinal/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Regulación de la Expresión Génica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transducción de Señal/inmunología , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/inmunología , Inmunidad Humoral , Transcripción Genética , Proteínas de la Membrana , Proteínas Mitocondriales
10.
J Pediatric Infect Dis Soc ; 13(7): 363-367, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38829802

RESUMEN

Anamnestic 13-valent pneumococcal conjugate vaccine immunization did not affect the relapse risk in pediatric idiopathic nephrotic syndrome. Pneumococcal serotype (PS)-specific antibody titers increased significantly in all groups. Children receiving immunomodulatory treatments (IMTs) displayed significantly lower levels of PS-specific antibodies for 3/8 serotypes tested. PS-specific B-cell counts significantly increased only in healthy controls and patients receiving corticosteroids.


Asunto(s)
Anticuerpos Antibacterianos , Memoria Inmunológica , Síndrome Nefrótico , Infecciones Neumocócicas , Vacunas Neumococicas , Humanos , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Síndrome Nefrótico/inmunología , Síndrome Nefrótico/tratamiento farmacológico , Niño , Masculino , Femenino , Anticuerpos Antibacterianos/sangre , Preescolar , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Adolescente , Inmunogenicidad Vacunal , Linfocitos B/inmunología
11.
Cell Oncol (Dordr) ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809326

RESUMEN

PURPOSE: Leukaemia remains a major contributor to global mortality, representing a significant health risk for a substantial number of cancer patients. Despite notable advancements in the field, existing treatments frequently exhibit limited efficacy or recurrence. Here, we explored the potential of abolishing HVEM (herpes virus entry mediator, TNFRSF14) expression in tumours as an effective approach to treat acute lymphoblastic leukaemia (ALL) and prevent its recurrence. METHODS: The clinical correlations between HVEM and leukaemia were revealed by public data analysis. HVEM knockout (KO) murine T cell lymphoblastic leukaemia cell line EL4 were generated using CRISPR-Cas9 technology, and syngeneic subcutaneous tumour models were established to investigate the in vivo function of HVEM. Immunohistochemistry (IHC), RNA-seq and flow cytometry were used to analyse the tumour immune microenvironment (TIME) and tumour draining lymph nodes (dLNs). Immune functions were investigated by depletion of immune subsets in vivo and T cell functional assays in vitro. The HVEM mutant EL4 cell lines were constructed to investigate the functional domain responsible for immune escape. RESULTS: According to public databases, HVEM is highly expressed in patients with ALL and acute myeloid leukemia (AML) and is negatively correlated with patient prognosis. Genetic deletion of HVEM in EL4 cells markedly inhibited tumour progression and prolonged the survival of tumour-bearing mice. Our experiments proved that HVEM exerted its immunosuppressive effect by inhibiting antitumour function of CD8+ T cell through CRD1 domain both in vivo and in vitro. Additionally, we identified a combination therapy capable of completely eradicating ALL tumours, which induces immune memory toward tumour protection. CONCLUSIONS: Our study reveals the potential mechanisms by which HVEM facilitates ALL progression, and highlights HVEM as a promising target for clinical applications in relapsed ALL therapy.

12.
Viruses ; 16(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675961

RESUMEN

AIMS: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. METHODS: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. RESULTS: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. CONCLUSIONS: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B , Reacciones Cruzadas , Vacuna contra Viruela , Virus Vaccinia , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática , Memoria Inmunológica , Activación de Linfocitos , Pruebas de Neutralización , Orthopoxvirus/inmunología , Viruela/inmunología , Viruela/prevención & control , Vacuna contra Viruela/inmunología , Linfocitos T/inmunología , Vacunación , Virus Vaccinia/inmunología , Células Vero , Monkeypox virus/inmunología
13.
Plant Signal Behav ; 19(1): 2345985, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38687704

RESUMEN

Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.


Asunto(s)
Herbivoria , Herbivoria/fisiología , Plantas/metabolismo , Defensa de la Planta contra la Herbivoria , Animales , Fenómenos Fisiológicos de las Plantas
14.
Chest ; 166(2): 281-293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38431050

RESUMEN

BACKGROUND: Corticosteroids have beneficial effects in improving outcomes in hospitalized patients with severe COVID-19 by suppressing excessive immune responses. However, the effect of corticosteroids on the humoral and T-cell responses of survivors of COVID-19 1 year after infection remains uncertain, as it relates to the extent of immediate, antigen-specific defense provided by protective memory. RESEARCH QUESTION: What is the effect of corticosteroids on long-term humoral and T-cell immune responses? STUDY DESIGN AND METHODS: In this retrospective cohort study conducted at a single center, we analyzed data from a cohort who had survived COVID-19 to compare the 1-year seropositivity and titer changes in neutralizing antibodies (NAbs) and SARS-CoV-2-specific antibodies. Additionally, we evaluated the magnitude and rate of SARS-CoV-2-specific T-cell response in individuals who received corticosteroids during hospitalization and those who did not. RESULTS: Our findings indicated that corticosteroids do not statistically influence the kinetics or seropositive rate of NAbs against the Wuhan strain of SARS-CoV-2 from 6 months to 1 year. However, subgroup analysis revealed a numerical increase of NAbs titers, from 20.0 to 28.2, in categories where long-term (> 15 days) and high-dose (> 560 mg) corticosteroids were administered. Similarly, corticosteroids showed no significant effect on nucleoprotein and receptor-binding domain IgG at 1 year, except for spike protein IgG (ß, 0.08; 95% CI, 0.04-0.12), which demonstrated a delayed decline of titers. Regarding T-cell immunity, corticosteroids did not affect the rate or magnitude of T-cell responses significantly. However, functional assessment of memory T cells revealed higher interferon-γ responses in CD4 (ß, 0.61; 95% CI, 0.10-1.12) and CD8 (ß, 0.63; 95% CI, 0.11-1.15) memory T cells in the corticosteroids group at 1 year. INTERPRETATION: Based on our findings, short-term and low-dose corticosteroid therapy during hospitalization does not appear to have a significant effect on long-term humoral kinetics or the magnitude and rate of memory T-cell responses to SARS-CoV-2 antigens. However, the potential harmful effects of long-term and high-dose corticosteroid use on memory immune responses require further investigation.


Asunto(s)
Corticoesteroides , Anticuerpos Antivirales , COVID-19 , Hospitalización , Inmunidad Humoral , SARS-CoV-2 , Humanos , Masculino , Femenino , Estudios Retrospectivos , COVID-19/inmunología , Persona de Mediana Edad , SARS-CoV-2/inmunología , Inmunidad Humoral/efectos de los fármacos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Hospitalización/estadística & datos numéricos , Corticoesteroides/uso terapéutico , Células T de Memoria/inmunología , Estudios de Seguimiento , Anticuerpos Neutralizantes/inmunología , Anciano , Tratamiento Farmacológico de COVID-19 , Adulto , Linfocitos T/inmunología
15.
Cell Rep ; 43(2): 113786, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363684

RESUMEN

Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Ratones , Supervivencia Celular , Hígado , Ganglios Linfáticos , Factores de Transcripción
16.
Proc Natl Acad Sci U S A ; 121(9): e2309153121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386711

RESUMEN

The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.


Asunto(s)
Linfocitos T CD4-Positivos , Células T de Memoria , Animales , Ratones , Memoria Inmunológica , Memoria , Receptores de Interleucina-7 , Transactivadores , Proteinas GADD45 , Antígenos de Diferenciación
17.
Vaccine ; 42(4): 912-917, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38233288

RESUMEN

The responsiveness/cross-binding of vaccine-induced memory B cells/MBCs to previous and emerging divergent SARS-CoV-2 variants (e.g., Omicron) is understudied. In this longitudinal study subjects receiving two or three doses of monovalent ancestral strain-containing COVID-19 mRNA vaccine were evaluated. In contrast to others, we observed significantly lower frequencies of MBCs reactive to the receptor-binding domain/RBD, the N-terminal domain/NTD, and the S1 of Omicron/BA.1, compared to Wuhan and Delta, even after a 3rd vaccine dose/booster. Our study is a proof of concept that MBC cross-reactivity to variants with greater sequence divergence from the vaccine strain may be overestimated and suggests that these variants may exhibit immune escape with reduced recognition by circulating pre-existing MBCs upon infection.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Estudios Longitudinales , Células B de Memoria , Vacunas de ARNm , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
ACS Nano ; 17(24): 24514-24538, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38055649

RESUMEN

Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.


Asunto(s)
Enfermedades Transmisibles , Nanopartículas , Vacunas , Humanos , Nanovacunas , Centro Germinal , Vacunación
19.
Cell Rep ; 42(12): 113542, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060451

RESUMEN

The memory B cell response consists of phenotypically distinct subsets that differ in their ability to respond upon antigen re-encounter. However, the pathways regulating the development and function of memory B cell subsets are poorly understood. Here, we show that CD62L and CD44 are progressively expressed on mouse memory B cells and identify transcriptionally and functionally distinct memory B cell subsets. Bcl6 is important in regulating memory B cell subset differentiation with overexpression of Bcl6 resulting in impaired CD62L+ memory B cell development. Bcl6 regulates memory B cell subset development through control of a network of genes, including Bcl2 and Zeb2. Overexpression of Zeb2 impairs the development of CD62L+ memory B cells. Importantly, CD62L is also differentially expressed on human memory B cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and identifies phenotypically distinct populations. Together, these data indicate that CD62L expression marks functionally distinct memory B cell subsets.


Asunto(s)
Células B de Memoria , Subgrupos de Linfocitos T , Animales , Humanos , Ratones , Antígenos/metabolismo , Memoria Inmunológica , Activación de Linfocitos , Subgrupos de Linfocitos T/metabolismo , Vacunación
20.
Biochemistry (Mosc) ; 88(11): 1857-1873, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105204

RESUMEN

T cells demonstrate high degree of complexity and broad range of functions, which distinguish them from other immune cells. Throughout their lifetime, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all functions of T cells, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. Strong association between the metabolism and T cell functions implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for the T cell function, as well as the recent progress in techniques to modulate metabolic features of lymphocytes.


Asunto(s)
Activación de Linfocitos , Linfocitos T , Glucólisis , Diferenciación Celular , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA