Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Int J Pharm ; 661: 124373, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909921

RESUMEN

In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.

2.
Materials (Basel) ; 17(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893741

RESUMEN

Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels' surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.

3.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931969

RESUMEN

The manufacturing method influences the properties of the produced components. This work investigates the influence of manufacturing methods, such as fused deposition modeling (3D printing) and injection molding, on the water absorption and mechanical and thermal properties of the specimens produced from neat bio-based poly(lactic acid) (PLA) polymer and poly(lactic acid)/wood composites. Acrylonitrile butadiene styrene (ABS) acts as the reference material due to its low water absorption and good functional properties. The printing layer thickness is one of the factors that affects the properties of a 3D-printed specimen. The investigation includes two different layer thicknesses (0.2 mm and 0.3 mm) while maintaining uniform overall thickness of the specimens across two manufacturing methods. 3D-printed specimens absorb significantly higher amounts of water than the injection-molded specimens, and the increase in the layer thickness of the 3D-printed specimens contributes to further increased water absorption. However, the swelling due to water absorption in 3D-printed specimens decreases upon increased layer thickness. The tensile, flexural, and impact properties of all of the specimens decrease after water absorption, while the properties improve upon decreasing the layer thickness. Higher porosity upon increasing the layer thickness is the predominant factor. The results from dynamic mechanical analysis and microscopy validate the outcomes. The results from this experimental study highlight the limitations of additive manufacturing.

4.
Ann Biomed Eng ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880816

RESUMEN

Porous nickel-titanium (NiTi) manufactured using metal injection molding (MIM) has emerged as an innovative generation of drug-loaded stent materials. However, an increase in NiTi porosity may compromise its mechanical properties and cytocompatibility. This study aims to explore the potential of porous NiTi as a vascular drug delivery material and evaluate the impact of porosity on its drug loading and release, mechanical properties, and cytocompatibility. MIM, combined with the powder space-holder method, was used to fabricate porous NiTi alloys with three porosity levels. The mechanical properties of porous NiTi were assessed, as well as the surface cell growth capability. Furthermore, by loading rapamycin nanoparticles onto the surface and within the pores of porous NiTi, we evaluated the in vitro drug release behavior, inhibitory effect on cell proliferation, and inhibition of neointimal hyperplasia in vivo. The results demonstrated that an increase in porosity led to a decrease in the mechanical properties of porous NiTi, including hardness, tensile strength, and elastic modulus, and a decrease in the surface cell growth capability, affecting both cell proliferation and morphology. Concurrently, the loading capacity and release duration of rapamycin were extended with increasing porosity, resulting in enhanced inhibitory effects on cell proliferation in vitro and inhibition of neointimal hyperplasia in vivo. In conclusion, porous NiTi holds promise as a desirable vascular drug delivery material, but a balanced consideration of the influence of porosity on both mechanical properties and cytocompatibility is necessary to achieve an optimal balance among drug-loading and release performance, mechanical properties, and cytocompatibility.

5.
Materials (Basel) ; 17(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930325

RESUMEN

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young's modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

6.
Polymers (Basel) ; 16(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732694

RESUMEN

This study investigates the mechanical properties of coconut sawdust powder combined with polypropylene (PP). The effect of compatibility content, wood powder (WP) content, and injection molding parameters on the properties of coconut wood powder composite (WPC) is evaluated. The results could be used to figure out the optimal mechanical properties such as tensile strength, elongation, elastic modulus, and flexural strength by selecting suitable parameters and composition. The bonding between the WP particles and the PP matrix is good, and the WP is uniformly distributed across the composite matrix, as indicated in the scanning electron microscopy (SEM) results. Interestingly, with the presence of the compatibilizer oleamide, increasing the WP content from 20 wt.% to 40 wt.% did not result in WP accumulation in the composite matrix. Notably, at 20 wt.% WP, the elongation is the highest (at 7.40 wt.%), while at 30 wt.% WP, the elastic modulus reaches the highest value. The maximum ultimate tensile strength (UTS) value is obtained at 35 wt.% WP. Higher WP mostly results in greater flexural strength and shore D hardness. At 40 wt.% WP, the WPC achieves its peak shore D hardness of 77.6. The Taguchi results suggest that WP content is the most critical factor in the UTS value of coconut WPCs. The filling pressure ranks second, followed by the packing pressure. Finally, unlike the other characteristics, the melt temperature has a minimal impact on the UTS value.

7.
Polymers (Basel) ; 16(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732734

RESUMEN

In the plastics industry, CFD simulation has been used for many years to support mold design. However, using simulation as a substitute for experimentation remains a major challenge to this day. This is due to the unknown congruence between simulation and experiment. The present work focuses on a comparison between simulation (generated with the software Moldflow Insight Ultimate from Autodesk Inc., San Francisco, CA, USA) and experiment by using molds of different complexity, where, in contrast to a large number of previous investigations, both the characteristics of the parts and the time series of the process parameters were compared with each other. For this purpose, the high-resolution time series of the process parameters injection pressure, flow rate, and cavity pressure as well as the mass and the dimensions of the manufactured parts were acquired during the experiments and the results were compared with the computations obtained from the simulation. In addition, potential causes like the material data, mesh and solver parameter, and the machine-specific behavior were analyzed to assess which of these causes may be decisive for a deviation between simulation and experiment.

8.
Polymers (Basel) ; 16(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732747

RESUMEN

Fiber-reinforced composites (FRPs) are characterized by their lightweight nature and superior mechanical characteristics, rendering them extensively utilized across various sectors such as aerospace and automotive industries. Nevertheless, the precise mechanisms governing the interaction between the fibers present in FRPs and the polymer melt during industrial processing, particularly the manipulation of the flow-fiber coupling effect, remain incompletely elucidated. Hence, this study introduces a geometrically symmetrical 1 × 4 multi-cavity mold system, where each cavity conforms to the ASTM D638 Type V standard specimen. The research utilizes theoretical simulation analysis and experimental validation to investigate the influence of runner and overflow design on the flow-fiber coupling effect. The findings indicate that the polymer melt, directed by a geometrically symmetrical runner, results in consistent fiber orientation within each mold cavity. Furthermore, in the context of simulation analysis, the inclusion of the flow-fiber coupling effect within the system results in elevated sprue pressure levels and an expanded core layer region in comparison to systems lacking this coupling effect. This observation aligns well with the existing literature on the subject. Moreover, analysis of fiber orientation in different flow field areas reveals that the addition of an overflow area alters the flow field, leading to a significant delay in the flow-fiber coupling effect. To demonstrate the impact of overflow area design on the flow-fiber effect, the integration of fiber orientation distribution analysis highlights a transformation in fiber arrangement from the flow direction to cross-flow and thickness directions near the end-of-fill region in the injected part. Additionally, examination of the geometric dimensions of the injected part reveals asymmetrical geometric shrinkage between upstream and downstream areas in the end-of-fill region, consistent with microscopic fiber orientation changes influenced by the delayed flow-fiber coupling effect guided by the overflow area. In brief, the introduction of the overflow area extends the duration in which the polymer melt exerts control in the flow direction, consequently prolonging the period in which the fiber orientation governs in the flow direction (A11). This leads to the impact of fiber orientation on the flow of the polymer melt, with the flow reciprocally affecting the fibers. Subsequently, the interaction between these two elements persists until a state of equilibrium is achieved, known as the flow-fiber coupling effect, which is delayed.

9.
3D Print Addit Manuf ; 11(2): 419-433, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689903

RESUMEN

An increasing demand for additively manufactured polymer composites with optimized mechanical properties is manifesting in different industries such as aerospace, biomedical, and automotive. Laser sintering (LS) is an additive manufacturing method that has the potential to produce reinforced polymers, which can meet the stringent requirements of these industries. For the development of a commercially viable LS nylon-based composite material, previous research studies worldwide have focused on adding glass beads to the powder material with the goal to produce fully dense parts with properties more representative of injection molded (IM) thermoplastic composites. This led to the development of a commercially available glass bead-filled polyamide 12 (PA12) powder. Although this powder has been on the market for quite a while, an in-depth comparison of the mechanical behavior of laser sintered versus IM glass bead-filled PA12 is lacking. In this study, laser-sintered glass bead-filled PA12 samples were built in different orientations and compared to IM counterparts. After sample production, the mechanical performance of the produced LS and IM parts was tested and compared to evaluate the quasistatic and dynamic mechanical performance and failure mechanisms at different load levels. In addition, the glass bead-filled PA12 properties were also compared to those of standard (unfilled) LS PA12 to assess whether glass beads actually improve the mechanical performance and fatigue lifetime of the final LS samples, as suggested in literature. Results in this work present and explain the increased stiffness but decreased fatigue life of glass bead-filled polyamide parts made by LS and IM. This research can be regarded as a "benchmark" study, in which samples produced from commercially available, filled and unfilled, PA12 powder grades are compared for both LS and conventional production techniques.

10.
3D Print Addit Manuf ; 11(2): e666-e674, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689929

RESUMEN

Additive manufacturing processes have recently been used more frequently since they offer high design freedom and easy individualization of components. The processes have been optimized to improve mechanical performance of the manufactured parts. Nevertheless, properties of components made by means of injection molding could not be reached yet. In the study at hand, ultrasonic phase spectroscopy (UPS) is used to compare the elastic properties of acrylonitrile butadiene styrene specimens manufactured by injection molding, by fused filament fabrication, and the Arburg plastic freeforming process. UPS allows a nondestructive and prompt determination of the elastic modulus and allows evaluation of the mechanical properties in every direction in space. In the end, results of UPS are compared with properties derived by uniaxial tensile tests to validate UPS as a test method for the determination of the mechanical properties of polymers. Regardless of the manufacturing process, an approximately linear dependence of the elastic moduli on the density can be determined. Furthermore, the quasistatic properties of the injection molded samples consistently exhibit the mechanical properties of the other samples by at least 10%.

11.
J Esthet Restor Dent ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817077

RESUMEN

OBJECTIVES: To evaluate the compressive modulus, translucency, and light curing irradiance transmittance of four clear polyvinyl siloxane (PVS) materials used for the injection molding technique at varying thicknesses, and to assess the correlation between color parameters and irradiance transmittance. MATERIALS AND METHODS: Four clear PVS materials (Exaclear, Clear Bite Matrix, Affinity Crystal, and Memosil 2) were used in this study. Compressive modulus was measured by compressing cylindrical PVS specimens (n = 9; d = 10 mm; t = 6 mm) up to 30% strain using a universal testing machine. For the translucency analysis and irradiance transmittance, specimens (n = 5) were fabricated with five different thicknesses (d = 12 mm and t = 2, 4, 6, 8 and 10 mm). The L*, a, *b* values of specimens were obtained using a CIELab spectrophotometer (CMD-700, Konica Minolta) with calibrated white and black tiles; the translucency parameter was calculated. The same specimens were placed onto a spectrophotometer (MARC Light Collector) to measure irradiance transmitted through the specimens from a light curing unit (Valo Corded, Ultradent). Data were analyzed using analysis of variance (ANOVA) with Tukey post hoc test and the correlation between translucency and irradiance transmittance of materials for each thickness was evaluated using Pearson's correlation. RESULTS: Compressive modulus differences in PVS materials were significant (one-way ANOVA: df = 3, F = 76.27, p < 0.001); Affinity and Memosil 2 were highest with no significant difference between them (Tukey: t = -1.62; p = 0.382). Clear Bite was higher than Exaclear (Tukey: t = -3.70; p = 0.004). Exaclear was lowest. Translucency decreased with thickness (Two-way ANOVA: df = 3, F = 586.53, p < 0.001; thickness: df = 4, F = 1389.34, p < 0.001). Exaclear was most translucent at all thicknesses. L*, a*, b* values varied by material and thickness (L*: df = 3, F = 1213.32, p < 0.001; a*: df = 3, F = 10766.8, p < 0.001; b*: df = 3, F = 3260.42, p < 0.001). Memosil 2 had lowest b* values. Irradiance transmittance was affected by material and thickness (Two-way ANOVA: df = 4, F = 2388.86, p < 0.001). Exaclear had highest irradiance transmission, surpassing control at >6 mm. Violet/blue irradiance ratio decreased with thickness; Exaclear maintained a constant ratio, indicating preserved violet irradiance. There was a strong positive correlation between translucency and light irradiance (Pearson's r = 0.97, R2 = 0.86-0.96). Radiant exposure analysis suggests adjusting the curing time based on PVS thickness for optimal exposure (10 J/cm2) is achievable within 13-14 s for <2 mm and 21-30 s for 8-10 mm with Clear Bite, Affinity, and Memosil 2; whereas Exaclear requires less time. CONCLUSIONS: Compressive modulus in clear PVS materials varied by type; Affinity and Memosil 2 demonstrate higher modulus, offering more stability of the clear mold. Translucency and irradiance transmission through clear PVS materials decreased as their thickness increased, yet Exaclear exceled in maintaining high translucency and superior light transmission capabilities. Additionally, there is a strong positive linear correlation between translucency and light irradiance transmittance, offering a method to adjust curing times effectively based on material translucency. CLINICAL SIGNIFICANCE: The light curing time to adequately polymerize composite through clear impression material may need to be increased, particularly with thicker matrices or less translucent materials.

12.
Polymers (Basel) ; 16(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611132

RESUMEN

In low-pressure wax injection molding, cooling time refers to the period during which the molten plastic inside the mold solidifies and cools down to a temperature where it can be safely ejected without deformation. However, cooling efficiency for the mass production of injection-molded wax patterns is crucial. This work aims to investigate the impact of varying surface roughness on the inner walls of the cooling channel on the cooling efficiency of an aluminum-filled epoxy resin rapid tool. It was found that the cooling time for the injection-molded products can be determined by the surface roughness according to the proposed prediction equation. Employing fiber laser processing on high-speed steel rods allows for the creation of microstructures with different surface roughness levels. Results demonstrate a clear link between the surface roughness of cooling channel walls and cooling time for molded wax patterns. Employing an aluminum-filled epoxy resin rapid tool with a surface roughness of 4.9 µm for low-pressure wax injection molding can save time, with a cooling efficiency improvement of approximately 34%. Utilizing an aluminum-filled epoxy resin rapid tool with a surface roughness of 4.9 µm on the inner walls of the cooling channel can save the cooling time by up to approximately 60%. These findings underscore the significant role of cooling channel surface roughness in optimizing injection molding processes for enhanced efficiency.

13.
Appl Spectrosc ; : 37028241247823, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651333

RESUMEN

In the processing of polymer blends and composites, in-line near-infrared (NIR) spectroscopy enables monitoring of the composition and its composite uniformity and contributes to rapid process development and quality control. However, in the injection molding process, the study of the composition of polymer materials has been delayed due to high-pressure conditions. Our research group developed NIR probes for transmission and diffuse reflectance measurements that can withstand high-pressure and temperature conditions up to 130 MPa and 200 °C. In this research, transmission and diffuse reflectance spectra were measured inline during the injection molding process of polymer blends of poly(lactic acid) and polybutylene succinate adipate. The intensity of each polymer band in the second-derivative spectra exhibited a monotonic increase or decrease in response to changes in the blend ratio. Using transmission and diffuse reflectance spectra as explanatory variables of the partial least squares regression model simultaneously, the model showed high estimation accuracy for the entire region of the blend ratio. Finally, this model was applied to monitor the polymer changeover operation, and the change in the blend ratio in the molded product was successfully estimated in line.

14.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611141

RESUMEN

Short fiber-reinforced thermoplastic polymers (SFRTPs) are commonly used in various molding methods due to their high specific elasticity and strength. To evaluate the interfacial strength, several determination methods have been proposed, including the interfacial shear strength (IFSS). In previous research, an IFSS evaluation method based on the short beam shear method was proposed. However, this method is only applicable to micrometer-sized fibers with high stiffness levels that are not easily bent. When utilizing cellulose fiber, the interfacial shear strength (IFSS) results frequently exhibit significant deviations. To tackle this issue, we suggest an enhanced experimental technique that employs beam-shaped specimens with welding points based on the short beam shear test. Furthermore, we conducted a three-dimensional analysis of the original method to determine the fiber orientation angle and IFSS. The outcomes were compared with previously reported determinations. The IFSS achieved through the novel method proposed in this paper exhibits high precision and reliability, rendering it suitable for use with soft and flexible fibers.

15.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674978

RESUMEN

Injection molding is a highly nonlinear procedure that is easily influenced by various external factors, thereby affecting the stability of the product's quality. High-speed injection molding is required for production due to the rapid cooling characteristics of thin-walled parts, leading to increased manufacturing complexity. Consequently, establishing appropriate process parameters for maintaining quality stability in long-term production is challenging. This study selected a hot runner mold with a thin wall fitted with two external sensors, a nozzle pressure sensor and a tie-bar strain gauge, to collect data regarding the nozzle peak pressure, the timing of peak pressure, the viscosity index, and the clamping force difference value. The product weight was defined as the quality indicator, and a standardized parameter optimization process was constructed, including injection speed, V/P switchover point, packing, and clamping force. Finally, the optimized process parameters were applied to the adaptive process control experiments using the developed control system operated within the micro-controller unit (MCU). The results revealed that the control system effectively stabilized the product weight variation and standard deviation of 0.677% and 0.0178 g, respectively.

16.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675028

RESUMEN

The mechanical recycling of discarded plastic products as resources for environmental preservation has recently gained research attention. In this context, it is necessary to use waste materials for fiber-reinforced thermoplastics (FRTP). Glass and carbon fibers are often damaged by shear and compression during melt-forming processes. To achieve a sustainable society, it is necessary for thermal recycling to produce minimal to no residue and for mechanical recycling to maintain the length of fibers used in FRTP to preserve their performance as a reinforcing agent. Aramid fibers (AFs) do not shorten during the melt-molding process, and their composites have excellent impact strength. On the other hand, plastics reinforced with glass or carbon fibers are reported to have a superior strength and modulus of elasticity compared to aramid fibers. This study investigates the dispersion of a carbon nanofiber (CNF), a whisker, as the third component in aramid-fiber-reinforced polypropylene (PP/AF). The results and discussion sections demonstrate how the dispersion of CNF in PP/AF can enhance the mechanical properties of injection-molded products without compromising their impact resistance. The proposed composition will have excellent material recyclability and initial mechanical properties compared to glass-fiber-reinforced thermoplastics.

17.
J Prosthodont Res ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479888

RESUMEN

PATIENTS: This case report presents a minimally invasive approach to replace a missing mandibular lateral incisor using a dual-injection molding technique with flowable composite resins. Integrated with a comprehensive digital workflow, this method achieves a structurally and esthetically biomimetic, bi-layered prosthetic solution. A 34-year-old woman with congenital absence of a mandibular lateral incisor was successfully rehabilitated using a direct composite resin-bonded fixed partial denture (RBFPD). DISCUSSION: Two specialized three-dimensional (3D)-printed flexible indices stabilized by a custom-designed 3D-printed rigid holder were employed to ensure the meticulous injection molding of flowable composite resins formulated to emulate the inherent chromatic gradations between dentin and enamel. The inherent flexibility of the indices, combined with the holder, facilitated accurate and seamless adaptation to the complex morphological features of the dental arch, thereby mitigating the challenges commonly associated with rigid 3D-printed resin indices. CONCLUSIONS: The bilayered direct composite RBFPD using 3D printed flexible indices prepared with a full digital workflow has several advantages over other dental prosthetic solutions, including noninvasiveness, cost-effectiveness, biomimetic esthetics, repairability, and shortened treatment times. Although the initial results are promising, further longitudinal studies with larger patient cohorts are required to confirm the long-term efficacy of this approach.

18.
Cureus ; 16(2): e54676, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38524084

RESUMEN

AIM AND OBJECTIVES: The aim of this study is to comparatively analyse the compressive and tensile strength of different types of record base materials made of different materials and processing techniques. MATERIALS AND METHODOLOGY: The compressive and tensile strength of 4 types of injection moulded materials were compared with a control of conventional compression moulded material. Twenty test specimens (10 tensile and 10 compressive) were fabricated from each material. A test was done using the Instron 3382 (Norwood, MA, USA) universal testing machine. RESULTS: Compressive and tensile test values showed significant differences between the record base resin groups tested for both compressive and tensile strength tests (p=0.00). The mean tensile strength value was greatest for Group V (66.0 MPa) and lowest for Group III (41.9MPa) and the mean compressive strength value was greatest for Group I (74.5 MPa) followed by Group V (70.2 MPa) and lowest for Group III (10.8 MPa). CONCLUSION: Injection moulded acetal resin showed the highest tensile strength value; it was comparable to that of conventional compression moulded polymethyl methacrylate (PMMA). Compression moulding is reported to have the highest compressive strength values followed by injection moulded acetal resin material. Injection moulded acetal resin material attributed to its advantages and superior strength value, can be used as a material of choice in various clinical scenarios.

19.
Materials (Basel) ; 17(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541551

RESUMEN

Powder injection molding is an established, cost effective and often near-net-shape mass production process for metal or ceramic parts with complex geometries. This paper deals with the extension of the powder injection molding process chain towards the usage of a commercially available borosilicate glass and the realization of glass compounds with huge densities. The whole process chain consists of the individual steps of compounding, molding, debinding, and sintering. The first part, namely, the search for a suitable feedstock composition with a very high solid load and reliable molding properties, is mandatory for the successful manufacture of a dense glass part. The most prominent feature is the binder composition and the related comprehensive rheological characterization. In this work, a binder system consisting of polyethylene glycol and polymethylmethacrylate with stearic acid as a surfactant was selected and its suitability for glass injection molding was evaluated. The influence of all feedstock components on processing and of the process steps on the final sintered part was investigated for sintered glass parts with densities around 99% of the theoretical value.

20.
ACS Appl Mater Interfaces ; 16(6): 7670-7685, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38310585

RESUMEN

The phase separation of ceramics in a biopolymer matrix makes it challenging to achieve satisfactory mechanical properties required for orthopedic applications. It has been found that silane coupling agents can modify the surface of the bioceramic phase by forming a molecular bridge between the polymer and the ceramic, resulting in improved interfacial strength and adhesion. Therefore, in the present study, silane-modified diopside (DI) ceramic and ε-polycaprolactone (PCL) biopolymer composites were fabricated by injection molding method. The silane modification of DI resulted in their uniform dispersion in the PCL matrix, whereas agglomeration was found in composites containing unmodified DI. The thermal stability of the silane-modified DI-containing composites also increased. The Young's modulus of the composite containing 50% w/w DI modified by 3% w/w silane increased by 103% compared to composites containing 50% w/w unmodified DI. The biodegradation of the unmodified composites was significantly high, indicating their weak interfacial strength with the PCL matrix (p ≤ 0.001). The osteoconductive behavior of the composites was also validated by in vitro cell-material studies. Overall, our findings supported that the silane-modified composites have improved surface roughness, mechanical, and osteoconductive properties compared to the unmodified composite and have the potential for orthopedic applications.


Asunto(s)
Polímeros , Silanos , Ácido Silícico , Biopolímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA