Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.095
Filtrar
1.
New Phytol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351648

RESUMEN

Functional differences between native and exotic species, estimated when species are grown alone or in mixtures, are often used to predict the invasion risk of exotic species. However, it remains elusive whether the functional differences estimated by the two methods and their ability to predict species invasiveness (e.g. high abundance) are consistent. We compiled data from two common garden experiments, in which specific leaf area, height, and aboveground biomass of 64 common native and exotic invasive species in China were estimated when grown individually (pot) or in mixtures (field). Exotic species accumulated higher aboveground biomass than natives, but only when grown in field mixtures. Moreover, aboveground biomass and functional distinctiveness estimated in mixtures were more predictive of species persistence and relative abundance in the field mixtures in the second year than those estimated when grown alone. These findings suggest that assessing species traits while grown alone may underestimate the competitive advantage for some exotic species, highlighting the importance of trait-by-environment interactions in shaping species invasion. Therefore, we propose that integrating multi-site or multi-year field surveys and manipulative experiments is required to best identify the key trait(s) and environment(s) that interactively shape species invasion and community dynamics.

2.
Bull Entomol Res ; : 1-9, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354873

RESUMEN

As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. Opisina arenosella Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of O. arenosella under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that O. arenosella is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of O. arenosella.

3.
Ecol Evol ; 14(10): e70349, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39360126

RESUMEN

Originating from the Black and Caspian seas, the Round Goby (Neogobius melanostomus) has become one of the most successful invaders of freshwater ecosystems. In this study, we provide a characterization of the reproductive strategy of an established population of Round Gobies in the Upper Danube river including sex ratio, fluctuations of gonadosomatic index (GSI), analysis of timing of spawning as well as of clutch and egg size. We compare these results to other studies from the native and invaded range. In the Danube, the Round Goby population was found to be female dominated, however fluctuations in magnitude of female bias were observed between months. Monitoring of the population across 1.5 years revealed that GSI was highest from April to June, while lowest values were observed in August and September. Using time-series analysis, a delayed effect of temperature on GSI was found for females and males, while a quicker response of GSI levels to photoperiod and discharge was observed for females. GSI increased with body size for females and eggs were found to be significantly larger in May, however clutch sizes did not differ between months. Results of a literature review revealed great differences in timing and length of spawning season as well as sex ratio between populations throughout the distribution range, which can probably be explained by climatic and photoperiodic conditions together with the time since invasion and the high plasticity of Round Gobies.

4.
PeerJ ; 12: e17782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364359

RESUMEN

The monitoring of mosquitoes is of great importance due to their vector competence for a variety of pathogens, which have the potential to imperil human and animal health. Until now mosquito occurrence data is mainly obtained with conventional monitoring methods including active and passive approaches, which can be time- and cost-consuming. New monitoring methods based on environmental DNA (eDNA) could serve as a fast and robust complementary detection system for mosquitoes. In this pilot study already existing marker systems targeting the three invasive mosquito species Aedes (Ae.) albopictus, Ae. japonicus and Ae. koreicus were used to detect these species from water samples via microfluidic array technology. We compared the performance of the high-throughput real-time PCR (HT-qPCR) system Biomark HD with real-time PCR (qPCR) and also tested the effect of different filter media (Sterivex® 0.45 µm, Nylon 0.22 µm, PES 1.2 µm) on eDNA detectability. By using a universal qPCR protocol and only 6-FAM-MGB probes we successfully transferred these marker systems on the HT-qPCR platform. All tested marker systems detected the target species at most sites, where their presence was previously confirmed. Filter media properties, the final filtration volume and observed qPCR inhibition did not affect measured Ct values via qPCR or HT-qPCR. The Ct values obtained from HT-qPCR were significantly lower as Ct values measured by qPCR due to the previous preamplification step, still these values were highly correlated. Observed incongruities in eDNA detection probability, as manifested by non-reproducible results and false positive detections, could be the result of methodological aspects, such as sensitivity and specificity issues of the used assays, or ecological factors such as varying eDNA release patterns. In this study, we show the suitability of eDNA-based detection of mosquito species from water samples using a microfluidic HT-qPCR platform. HT-qPCR platforms such as Biomark HD allow for massive upscaling of tested species-specific assays and sampling sites with low time- and cost-effort, thus this methodology could serve as basis for large-scale mosquito monitoring attempts. The main goal in the future is to develop a robust (semi)-quantitative microfluidic-based eDNA mosquito chip targeting all haematophagous culicid species occurring in Western Europe. This chip would enable large-scale eDNA-based screenings to assess mosquito diversity, to monitor species with confirmed or suspected vector competence, to assess the invasion progress of invasive mosquito species and could be used in pathogen surveillance, when disease agents are incorporated.


Asunto(s)
Aedes , ADN Ambiental , Especies Introducidas , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN Ambiental/análisis , ADN Ambiental/genética , Aedes/genética , Proyectos Piloto , Mosquitos Vectores/genética , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación
5.
J Fish Biol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385443

RESUMEN

Invasive species present a serious peril to aquatic ecosystems worldwide, thus it is essential to have a comprehensive understanding of the reproductive dynamics, spreading characteristics, and biological properties of these species in order to effectively manage their population structure and mitigate both the ecological damage and economic loss they can cause. For this reason, we delved into the reproductive dynamics of Pseudorasbora parva, an invasive species of inland water fish found in Türkiye. We focused on three populations inhabiting Beysehir (Konya, Isparta) and Egirdir Lakes (Isparta) and Onaç Reservoir (Burdur). Sampling was carried out on a monthly basis from March 2021 to June 2022, utilizing a variety of tools such as multimesh nets, seine nets, and electrofishing. The developmental stages of gonads and reproductive cells were determined through morphological and microscopic examinations. A total of 1186 P. parva individuals were captured from all three lakes. Our results showed that the Beysehir Lake population spawned from March to July, while the Egirdir Lake population did so between May and October, and the Onaç Reservoir population laid their eggs from June to August. Female individuals in Beysehir Lake, Egirdir Lake, and Onaç Reservoir had initial breeding lengths of 3.49, 4.89, and 5.35 cm, respectively. In comparison, male individuals measured 5.56, 4.80, and 5.40 cm. Interestingly, the Beysehir Lake population exhibited the highest egg fecundity, with each individual at 2 years producing a remarkable 2949 eggs. The present findings provide valuable information for us to further understand the reproductive biology and dynamics of P. parva, which could be useful in managing and preventing the spread of this invasive species in inland aquatic ecosystems.

6.
Sci Total Environ ; : 176723, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39383952

RESUMEN

As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges. During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39366547

RESUMEN

Successful invasive species increase their spreading success by trading-off nutritional and metabolic resources allocated to reproduction and range expansion with other costly body functions. One proposed mechanism for the reallocation of resources is a trade-off with the immune function and the regulation of oxidative status. Relying on a panel of blood-based markers of immune function and oxidative status quantified in an invasive species (Egyptian goose) and two native competing species (mallard and mute swan) in Germany, we tested the hypothesis that the invasive species would have (i) lower investment in immune function, (ii) lower levels of oxidative damage, and (iii) no higher antioxidant defences compared to the native species. We found lower levels of adaptive immune markers (lymphocytes and immunoglobulin Y), in the invasive species compared to the two native species. Innate immune profile was generally similar between Egyptian geese and mallards. By contrast, mute swans showed higher levels of heterophils and lysozymes, and lower levels of bacteria killing ability compared to both Egyptian geese and mallards. Mute swans also showed higher levels of haemolysis and haemagglutination, but lower levels of monocytes and haematocrit compared to Egyptian geese. Reactive oxygen metabolites, a marker of oxidative damage, were higher in mallards and lower in Egyptian geese compared to the other waterfowl species, while levels of antioxidants were generally similar among the three species. Our results point to a reduced investment in adaptive immune function in the invasive species as a possible resources-saving immunological strategy due to the loss of co-evolved parasites in the new colonised habitats, as observed in a previous study. A lower investment in immune function may benefit other energy-demanding activities, such as reproduction, dispersal, and territoriality, while maintaining relatively higher innate immunity is beneficial since invasive species mainly encounter novel pathogens. Results pointed out also other important species-specific differences in baseline immune status, supporting previous findings on the relationship between species' body mass and immune profile.

8.
Trends Ecol Evol ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39353820

RESUMEN

The rapid diversification of terminology associated with invasion ecology is a known barrier to effective communication and management. These challenges are magnified by the addition of terms and concepts related to climate-induced range-shifting taxa and/or changes to impacts. Further, institutional policies and terminologies for invasive species introduce new ambiguities when considering climate change. To alleviate communication and application challenges, we introduce a conceptual framework that organizes climate-related invasion terms, revealing ambiguities and gaps. Additionally, we illustrate how these ambiguities can affect management with four case studies and consider situations where resolution can improve policy and management outcomes. The framework can help users avoid inconsistent use of terminology, and prioritize when to address management and policy consequences related to associated terminological ambiguity.

9.
Ecology ; : e4446, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370724

RESUMEN

Why nonnative invasive plant species commonly co-occur, despite their competitive superiority and propensity to displace native species, remains a paradox in invasion biology. Negative interactions among competitively dominant invaders are potentially alleviated by two understudied mechanisms: seasonal priority effects, where phenological separation weakens the effect of competition on species with early phenology; and indirect facilitation, where competition between two species is mitigated by a third species. Although phenological separation has been speculated as a mechanism for explaining co-occurrence patterns of invasive plants, it has never been directly tested. In a greenhouse experiment, we tested the effect of phenological separation on direct and indirect interactions between three co-occurring invasive plant species found in the riparian forests of North America. These species have distinct natural phenological separation with reproduction in early spring (Ficaria verna), mid-spring (Alliaria petiolata), and late summer (Microstegium vimineum). When phenology was experimentally synchronized, direct pairwise interactions among invasive species were overwhelmingly negative, asymmetric, and unlikely to promote co-occurrence. However, increasing phenological separation generated seasonal priority effects, which weakened the effect of competition on species with early phenology. Furthermore, the addition of a third species generated indirect facilitative effects, which balanced competitive outcomes among the two weakest competitors. Based on these findings, we conclude that phenological separation modulates the strength of both seasonal priority effects and indirect facilitation within species interaction networks and may promote the co-occurrence of three common invasive species within this study system. We articulate how future studies can test the external validity of these findings in more complex environmental conditions and with a larger range of invasive plants.

10.
Ecol Appl ; : e3046, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373309

RESUMEN

Understanding the factors that limit the abundance of threatened species is critical for the development of effective conservation strategies. However, gaining such knowledge from monitoring programs and using it to inform decision-making for rare species can be difficult due to methodological issues posed by the problems of distinguishing true absences from false absences and the analysis of datasets dominated by zero counts. The plains-wanderer (Pedionomus torquatus) is a critically endangered ground-nesting bird that occurs in grasslands of southeastern Australia. Decline of the plains-wanderer has been attributed to habitat modification but little emphasis has been placed on the role of introduced predators, such as the red fox (Vulpes vulpes), which have had a devastating effect on small ground-dwelling vertebrates in dryland regions of Australia. Here, we use a 9-year time series of spotlight counts to investigate the impact of vegetation structure and fox presence on plains-wanderer occupancy and abundance. We used distance sampling to determine the effective strip width for sighting plains-wanderers during spotlight surveys. We then used a hurdle model approach whereby binomial generalized additive models were fitted to presence/absence data within the effective strip-width across all sites and negative-binomial models were fitted to an index of abundance at sites where plains-wanderers were observed. Plains-wanderer occupancy and abundance fluctuated markedly through time. Where foxes were absent, occupancy (but not abundance) of plains-wanderers showed a humped relationship with grass height with an optimal height between 50 and 150 mm. Where foxes were present however, this relationship broke down and plains-wanderers were rarely recorded. Our results suggest that plains-wanderers should benefit from management strategies that maintain grass height at optimal levels and exclude foxes or effectively suppress their populations. A key message from this study is that if statistical analyses of data generated by monitoring programs for rare species are intended to inform management decisions by identifying relationships between threatened species and drivers of their abundance, there should be consideration of analytic approaches that account for true and false zeroes, high prevalence of zeroes, and the possibility of nonlinear responses.

11.
Mar Pollut Bull ; 208: 116927, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39255672

RESUMEN

The introduction of biopollutant species challenge ecosystem health and economy in remote islands. Here we checked the advance of invasive fouling species in five French Polynesian islands. Expansion of invasive species (Acantophora spicifera, Bugula neritina, Chthamalus proteus, Dendostrea frons) was detected using individual barcoding (COI for animals, RBLC for algae), and metabarcoding on biofouling (COI and 18S sequences). They were especially abundant in Port Phaeton (Tahiti), Bora Bora and Rangiroa atoll. Chthamalus proteus is a vector of bacterial diseases and may harm native French Polynesian mollusks. Dendostrea frons is a vector of Perkinsus, a parasite to which black pearl oysters, the mainstay of the Polynesian economy, are susceptible. High ecological and epidemiological risks were estimated for C. proteus and D. frons, and ecological risks also for A. spicifera and especially for B. neritina. Strengthening marine biosecurity measures is highly recommended to conserve these unique ecosystems and their associated services.

12.
J Econ Entomol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257088

RESUMEN

Examining the host range of emerging invasive insects is essential to assess their invasion potential and to anticipate the negative impacts of their spread. The ongoing North American invasion of spotted lanternfly (SLF) [Lycorma delicatula (White, 1845)] threatens agricultural, urban, and natural areas. The survival and development of SLF nymphs on Washington navel orange [Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae)] trees were assessed in a quarantine facility. Results indicated that SLF nymphs can develop to at least the third instar by feeding exclusively on Washington navel orange. This finding suggests that, at least up to the third stage of nymphal development, Washington navel orange might be a suitable host for SLF, highlighting the possibility that this invasive pest represents an unrecognized threat to this globally important crop and possibly to other Citrus species.

13.
Evol Appl ; 17(9): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286761

RESUMEN

The establishment and spread of invasive species are directly related to intersexual interactions as dispersal and reproductive success are related to distribution, effective population size, and population growth. Accordingly, populations established by r-selected species are particularly difficult to suppress or eradicate. One such species, the red swamp crayfish (Procambarus clarkii) is established globally at considerable ecological and financial costs to natural and human communities. Here, we develop a single nucleotide polymorphism (SNP) loci panel for P. clarkii using restriction-associated DNA-sequencing data. We use the SNP panel to successfully genotype 1800 individuals at 930 SNPs in southeastern Michigan, USA. Genotypic data were used to reconstruct pedigrees, which enabled the characterization of P. clarkii's mating system and statistical tests for associations among environmental, demographic, and phenotypic predictors and adult reproductive success estimates. We identified juvenile cohorts using genotype-based pedigrees, body size, and sampling timing, which elucidated the breeding phenology of multiple introduced populations. We report a high prevalence of multiple paternity in each surveyed waterbody, indicating polyandry in this species. We highlight the use of newly developed rapid genomic assessment tools for monitoring population reproductive responses, effective population sizes, and dispersal during ongoing control efforts.

14.
Environ Entomol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316668

RESUMEN

Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) is an important egg parasitoid of the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Methods for laboratory-rearing O. agrili have been developed but its mass-production depends on the continuous production and storage of freshly laid EAB eggs as well as diapaused parasitoid progeny (inside parasitized EAB eggs). The purpose of this study was to determine optimal environmental conditions for long-term storage of host eggs as well as diapaused parasitoid progeny. Fresh host eggs and diapaused parasitoid progeny were stored at two low storage temperatures (1.7 and 12.8 °C) and three levels of relative humidity (low ~31%, medium ~74%, and high ~99.9%) for various length of time (15-270 days) and then evaluated for host egg suitability and the reproductive fitness of stored parasitoid progeny. EAB eggs were stored for approximately 30 days without significant reduction of their viability and suitability to O. agrili parasitism at low storage temperatures under high and medium relative humidity. Neither storage temperature or humidity had any significant effects on adult parasitoid emergence for storage durations of up to 270 days. When storage durations were over 120 days, however, both adult parasitoid longevity and fecundity declined approximately 20-30% across all temperature and humidity treatments. Relevance of findings to mass-production and storage of O. agrili for biocontrol is discussed.

15.
Mar Pollut Bull ; 208: 117017, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39317107

RESUMEN

For four decades, cordgrass (Spartina alterniflora) has invaded salt marshes in the Yellow Sea, altering physical, biogeochemical, and biological processes. Here, we investigated the ecological effects of S. alterniflora invasion on benthic environments compared to native halophytes. S. alterniflora contributed to higher carbon accumulation rates compared with bare tidal flat in sediments (3.4 times), through greater primary production and root biomass, compared to Suaeda japonica (2.5 times) and Phragmites australis (2.4 times) over the given period. The results showed that S. alterniflora eradication treatments inhibited its growth but did not significantly affect the benthic communities. Compared to P. australis and bare tidal flats, S. alterniflora invasion resulted in lower greenhouse gas emission and higher contributions to macrobenthos nutrition, and increased sediment stability and carbon burial. Overall, these multiple lines of evidence provide new insights on S. alterniflora invasion, suggesting that the current eradication policy would be carefully reviewed.

16.
Evol Appl ; 17(9): e70016, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39310793

RESUMEN

The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host Wolbachia, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading Wolbachia strain wCer2 to investigate the invasion origin of the European cherry fruit fly, Rhagoletis cerasi. This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of Wolbachia. The introduced populations lack the wCer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from wCer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the wCer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of R. cerasi infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that R. cerasi was unlikely introduced from wCer2-infected populations in Central and Western Europe. We propose wCer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes Wolbachia as an indirect instrument to provide insights into the invasion source of R. cerasi in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.

17.
Zookeys ; 1212: 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309169

RESUMEN

Over the past decade, the prevalence of mass outbreaks involving non-native insects has sparked concerns about their potential negative impact on human inhabited areas and local environments. Plecialongiforceps Duda, 1933 (Diptera, Bibionidae) was recently recognized as an invasive pest in South Korea, causing public nuisance through mass outbreaks in the Seoul Metropolitan Area during early summer. In this study, we present the first complete mitochondrial genome of Plecialongiforceps, generated from the PacBio HiFi long-read sequencing data. Notably, the length of the circular genome is found to be larger than any annotated reference sequences of mitochondrial genomes for the infraorder Bibionomorpha, which is attributable to an unusually long A+T rich control region. We conducted a phylogenetic analysis of Bibionomorpha, focusing specifically on the family Bibionidae, using nearly all available mitochondrial genome data to elucidate relationships among genera within Bibionidae. Our phylogeny of Bibionomorpha recovered a strong monophyly of the family Bibionidae and its three subfamilies: Bibioninae (Bibio + Dilophus), Hesperininae (Hesperinus + Penthetria), and Pleciinae (Plecia), corroborating the recently proposed taxonomic classification system of Bibionidae. Furthermore, we discuss evolutionary trends within Bibionidae based on our well-supported higher relationships of the superfamily Bibionoidea.

18.
Mar Pollut Bull ; 207: 116716, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222553

RESUMEN

Ship ballast residual sediments are an important vector of introduction for non-indigenous species. We evaluated the proportion of residual sediments and associated organisms released during de-ballasting operations of a commercial bulk carrier and estimated a total residual sediment accumulation of ∼13 t, with accumulations of up to 20 cm in some tank areas that had accumulated over 11 years. We observed interior hull-fouling (anemones, hydrozoans, and bryozoans) and high abundances of viable invertebrate resting stages and dinoflagellate cysts in sediments. Although we determined that <1 % of residual sediments and associated resting stages were resuspended and released into the environment during individual de-ballasting events, this represents a substantial inoculum of 21 × 107 viable dinoflagellate cysts and 7.5 × 105 invertebrate resting stages with many taxa being nonindigenous, cryptogenic, or toxic/harmful species. The methods used and results will help estimate propagule pressure associated with this pathway and will be relevant for residual sediments and nonindigenous species management.


Asunto(s)
Sedimentos Geológicos , Navíos , Sedimentos Geológicos/química , Animales , Invertebrados/fisiología , Dinoflagelados/fisiología , Monitoreo del Ambiente , Especies Introducidas
19.
Sci Rep ; 14(1): 21494, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277632

RESUMEN

The introduction of the Nearctic predaceous stink bug species, (Perillus bioculatus) was attempted multiple times in various countries throughout Europe to mitigate the damage caused by the invasive and harmful pest species, the Colorado potato beetle (Leptinotarsa decemlineata). Though these attempts were thought to be unsuccessful for decades, more recent data elucidated that the species have established small self-sustaining populations in the Balkans Peninsula, Southern Russia, and Türkiye and recently began to expand. In the past years, the European range of the species reached Eastern Europe. After the first individuals were found in Hungary in October 2023 a citizen science campaign was launched to investigate the distribution of the species in the country. By June 2024 it became evident that the species is established throughout the country. Furthermore, observations regarding beetle larvae and moth caterpillars as alternative prey were reported supporting the previous assumptions that the naturalization and expansion of the species in Europe is facilitated by dietary drift. Here, we summarize the knowledge on the European presence of the two-spotted stink bug and formulate hypotheses regarding its future distribution and the impact of the species on the insect communities of the newly colonized areas.


Asunto(s)
Ciencia Ciudadana , Heterópteros , Animales , Europa (Continente) , Especies Introducidas , Escarabajos
20.
J Econ Entomol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279456

RESUMEN

Native to Asia, Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae) is a destructive and invasive pest of live trees, and now it has been found in the United States and Argentina. In recent years, this pest appeared in high densities in poplar monocultures from Eastern China (Jiangsu and Shanghai) and Argentina and caused significant poplar mortality. However, the origin of the pests related to tree damage and the Fusarium mutualists from some poplar zones in China remained unclear. Here, we provided a broader phylogeographic analysis of E. interjectus based on the mitochondrial gene (cytochrome c oxidase I) to determine the global genetic structure of this species. Five mitochondrial lineages were found in the native area. Populations introduced to the United States were originated from 4 localities. The Argentine population was derived from Japan. The species was observed with strikingly high level of cytochrome c oxidase I intraspecific divergence that exceeded interspecific divergence, but the high intraspecific variation was correlated with geographical locations among the native populations. Two nuclear genes (arginine kinase and carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) were more conservative, and intraspecific differences were lower than interspecific differences. The mitochondrial genetic variation was probably caused by evolution of lineages among geographically isolated populations. But it is immature to infer the existence of cryptic species based on cytochrome c oxidase I differences. All samples collected from poplar populations were indigenous and formed close relationship with a specimen from eastern and southern China. Surprisingly, pests from poplar populations in Jiangsu and Shanghai showed different haplotypes and mutualists. This suggested that the control strategies should consider the genetic and mutualistic diversity of beetles at different poplar localities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA