Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
J Proteome Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115235

RESUMEN

Archaeological textiles represent precious remains from ancient culture; this is because of the historical and cultural importance of the information that can be obtained by such relics. However, the extremely complicated state of preservation of these textiles, which can be charred, partially or totally mineralized, with heavy soil or biological contamination, requires highly specialized and sensitive analytical tools to perform a comprehensive study. Starting from these considerations, the paper presents a combined workflow that provides the extraction of dyes and keratins and keratin-associated proteins in a single step, minimizing sampling while maximizing the amount of information gained. In the first phase, different approaches were tested and two different protocols were found suitable for the purpose of the unique workflow for dyes/keratin-proteins: a slightly modified urea protocol and a recently proposed new TCEP/CAA procedure. In the second step, after the extraction, different methods of cleanup and workflow for proteins and dyes were investigated to develop protocols that did not result in a loss of aliquots of the analytes of interest and to maximize the recovery of both components from the extracting solution. These protocols investigated the application of two types of paramagnetic beads, unmodified and carboxylate-coated hydrophilic magnetic beads, and dialysis and stage-tip protocols. The newly designed protocols have been applied to cochineal, weld, orchil, kermes, and indigo keratin-based dyed samples to evaluate the effectiveness of the protocols on several dye sources. These protocols, based on a single extraction step, show the possibility of investigating dyes and keratins from a unique sample of 1 mg or lesser, with respect to the thresholds of sensitivity and accuracy required in the study of textile artifacts of historical and artistic values.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38860856

RESUMEN

Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8‒/‒) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation and blunted mitochondrial ketogenesis, the role for K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8‒/‒ colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8‒/‒ colonocyte mitochondria in vivo are smaller and rounder, and that mitochondrial motility is increased in K8‒/‒ Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared to controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8‒/‒ Caco-2 cells and in vivo in K8‒/‒ mouse colonocytes, and re-expression of K8 into K8‒/‒ Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.

3.
Biomedicines ; 12(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927483

RESUMEN

The changes in endometrial cells, both in the eutopic endometrium of patients with and without endometriosis and in lesions at ectopic sites, are frequently described and often compared to tumorigenesis. In tumorigenesis, the concept of "seed and soil" is well established. The seed refers to tumor cells with metastatic potential, and the soil is any organ or tissue that provides a suitable environment for the seed to grow. In this systematic review (PRISMA-S), we specifically compared the development of endometriosis with the "seed and soil" hypothesis. To determine changes in the endometrial seed, we re-analyzed the mRNA expression data of the eutopic and ectopic endometrium, paying special attention to the epithelial-mesenchymal transition (EMT). We found that the similarity between eutopic endometrium without and with endometriosis is extremely high (~99.1%). In contrast, the eutopic endometrium of patients with endometriosis has a similarity of only 95.3% with the ectopic endometrium. An analysis of EMT-associated genes revealed only minor differences in the mRNA expression levels of claudin family members without the loss of other cell-cell junctions that are critical for the epithelial phenotype. The array data suggest that the changes in the eutopic endometrium (=seed) are quite subtle at the beginning of the disease and that most of the differences occur after implantation into ectopic locations (=soil).

4.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892279

RESUMEN

Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.


Asunto(s)
Epidermis , Regulación Neoplásica de la Expresión Génica , Queratina-16 , Melanoma , Proteína A7 de Unión a Calcio de la Familia S100 , Neoplasias Cutáneas , Proteína con Dedos de Zinc GLI1 , Humanos , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100/genética , Epidermis/metabolismo , Epidermis/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Línea Celular Tumoral , Queratina-16/metabolismo , Queratina-16/genética , Regulación hacia Arriba , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Anciano
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892168

RESUMEN

Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , MicroARNs , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , MicroARNs/genética , MicroARNs/metabolismo
6.
Tissue Cell ; 88: 102397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677234

RESUMEN

The soft epidermis of mammals derives from the accumulation of keratohyaline granules in the granular layer, before maturing into corneocytes. Main proteins accumulated in the granular layer are pro-filaggrin and filaggrin that determine keratin clumping and later moisturization of the stratum corneum that remains flexible. This soft epidermis allows the high sensitivity of mammalian skin. Presence and thickness of the stratum granulosum varies among different species of mammals and even between different body regions of the same animal, from discontinuous to multilayered. These variations are evident using antibodies for filaggrin, a large protein that share common epitopes among placentals. Here we have utilized filaggrin antibodies (8959 and 466) and an acidic keratin antibody (AK2) for labeling placental, marsupial and monotreme epidermis. AK2 labeling appears mainly to detect K24 keratin, and less likely other acidic keratins. Immunoreactivity for filaggrin is absent in platypus, discontinuous in Echidna and in the tested marsupials. In placentals, it is inconstantly or hardly detected in the thin epidermis of bat, rodents, and lagomorphs with a narrow, mono-stratified and/or discontinuous granular layer. In contrast, where the granular layer is continuous or even stratified, both filaggrin and AK2 antibodies decorate granular cells. The ultrastructural analysis using the AK2 antibody on human epidermis reveals that a weak labeling is associated with keratohyalin granules and filamentous keratins of transitional keratinocytes and corneocytes. This observation suggests that basophilic filaggrin interacts with acidic keratins like K24 and determines keratin condensation into corneocytes of the stratum corneum.


Asunto(s)
Epidermis , Proteínas Filagrina , Proteínas de Filamentos Intermediarios , Queratinas , Proteínas de Filamentos Intermediarios/metabolismo , Animales , Queratinas/metabolismo , Epidermis/metabolismo , Humanos , Mamíferos/metabolismo , Queratinocitos/metabolismo , Inmunohistoquímica
7.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339083

RESUMEN

Keratins are the main components of the cell cytoskeleton of epithelial cells. Epithelial cells under stressful stimuli react by modifying their keratin expression pattern. Glomerular diseases are pathological conditions that may lead to loss of kidney function if not timely diagnosed and treated properly. This study aims to examine glomerular and tubular keratin expression in podocytopathies, ANCA-associated vasculitis, and IgA nephropathy and how this expression correlates to clinical outcomes. We included 45 patients with podocytopathies (minimal change disease and focal segmental glomerulosclerosis), ANCA-associated vasculitis, and IgA nephropathy, with or without crescentic lesions, and healthy controls. All tissues were assessed by photon microscopy and immunohistochemistry. Biopsy sections were examined for keratins 7, 8, 18, and 19 expression in the glomerular and tubulointerstitial areas separately. Moreover, we examined how keratin expression was correlated with long-term kidney function outcomes. All four studied keratins had significantly increased glomerular expression in patients with ANCA vasculitis compared to controls and MCD patients. Tubular expression of keratins 7, 8, and 19 was related to kidney outcome in all groups. Patients with crescents had higher expression of all keratins in both glomeruli and tubulointerstitium. The presence of tubular atrophy, interstitial fibrosis, mesangial hyperplasia, and interstitial inflammation did not affect keratin expression. Keratins, an abundant component of renal epithelial cells, have the potential to be featured as a biomarker for kidney function prognosis in patients with glomerular diseases.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/patología , Queratinas , Riñón/metabolismo , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/patología , Citoesqueleto/metabolismo
8.
Heliyon ; 10(3): e24549, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322947

RESUMEN

Background: Lung adenocarcinoma (LUAD) stands as the foremost histological subtype of non-small-cell lung cancer, accounting for approximately 40% of all lung cancer diagnoses. However, there remains a critical unmet need to enhance the prediction of clinical outcomes and therapy responses in LUAD patients. Keratins (KRTs), serving as the structural components of the intermediate filament cytoskeleton in epithelial cells, play a crucial role in the advancement of tumor progression. This study investigated the prognostic significance of the KRT family gene and developed a KRT gene signature (KGS) for prognostic assessment and treatment guidance in LUAD. Methods: Transcriptome profiles and associated clinical details of LUAD patients were meticulously gathered from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The KGS score was developed based on the expression of five prognostic KRT genes (KRT7, KRT8, KRT17, KRT18, and KRT80), and the upper quartile of the KGS score was chosen as the cutoff. The Kaplan-Meier method was evaluated to compare survival outcomes between KGS-high and KGS-low groups. The underlying mechanism was further investigated by GSEA, GSVA, and other bioinformatic algorithms. Results: High expression of the KGS signature exhibited a robust association with poorer overall survival (OS) in the TCGA-LUAD dataset (HR: 1.81; 95% CI: 1.35-2.42, P = 0.00011). The association was further corroborated in three external GEO cohorts, including GSE31210 (HR: 3.31; 95% CI: 1.7-6.47, P = 0.00017), GSE72094 (HR: 1.95; 95% CI: 1.34-2.85, P = 0.00057) and GSE26939 (HR: 3.19; 95% CI: 1.74-5.84, P < 0.0001). Interestingly, KGS-high tumors revealed enrichments in TGF-ß and WNT-ß catenin signaling pathways, exhibited heightened activation of the epithelial-mesenchymal transition (EMT) pathway and proved intensified tumor stemness compared to their KGS-low counterparts. Additionally, KGS-high tumor cells exhibited increased sensitivity to several targeted agents, including gefitinib, erlotinib, lapatinib, and trametinib, in comparison to KGS-low cells. Conclusion: This study developed a KGS score that independently predicts the prognosis in LUAD. High expression of KGS score, accompanied by upregulation of TGF-ß and WNT-ß catenin signaling pathways, confers more aggressive EMT and tumor progression.

9.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301891

RESUMEN

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Asunto(s)
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligandos , Receptor de Manosa/química , Mutagénesis , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Dominios y Motivos de Interacción de Proteínas , Cristalografía por Rayos X
10.
Virchows Arch ; 484(4): 637-644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289501

RESUMEN

Mallory-Denk bodies (MDBs) are hepatocellular cytoplasmic inclusions, which occur in certain chronic liver diseases, such as alcohol-related (ASH) and metabolic dysfunction-associated (MASH) steatohepatitis, copper toxicosis, some drug-induced liver disorders, chronic cholangiopathies, and liver tumors. Our study focused on the expression of the senescence markers p21WAF1/cip1 and p16INK4a in hepatocytes containing MDBs in steatohepatitis, chronic cholangiopathies with fibrosis or cirrhosis, Wilson's disease, and hepatocellular carcinomas. Cytoplasm and nuclei of MDB-containing hepatocytes as well as MDB inclusions, except those associated with carcinoma cells, were strongly p16-positive, p21-positive, as well as p21-negative nuclei in MDB-containing hepatocytes which were observed whereas MDBs were p21-negative. Expression of the senescence marker p16 suggests that MDB formation reflects an adaptive response to chronic stress resembling senescence with its consequences, i.e., expression of inflammation- and fibrosis-prone secretome. Thus, senescence can be regarded as "double-edged sword" since, on the one hand, it may be an attempt of cellular defense, but, on the other, also causes further and sustained damage by inducing inflammation and fibrosis related to the senescence-associated secretory phenotype and thus progression of chronic liver disease.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Hepatocitos , Cuerpos de Mallory , Humanos , Hepatocitos/patología , Hepatocitos/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Cuerpos de Mallory/patología , Cuerpos de Mallory/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Hígado/patología , Hígado/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Hepatopatías/patología , Hepatopatías/metabolismo , Hepatopatías/etiología
11.
Adv Sci (Weinh) ; 11(5): e2300509, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37949677

RESUMEN

Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation. These structural changes are associated with a softer, more elastically deformable cancer cell with enhanced adhesion and clustering ability leading to greater in vivo lung metastatic burden. This work describes a novel biomechanical mechanism by which tKRT81 promotes metastasis, highlighting the importance of the biophysical characteristics of tumor cells.


Asunto(s)
Neoplasias de la Mama , Queratinas Específicas del Pelo , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Expresión Génica Ectópica , Queratinas Específicas del Pelo/genética , Queratinas Específicas del Pelo/metabolismo , Isoformas de Proteínas/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-37567027

RESUMEN

Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.


Asunto(s)
Queratinas , Lagartos , Animales , Queratinas/genética , Queratinas/metabolismo , Lagartos/genética , Lagartos/metabolismo , Epidermis/metabolismo , Evolución Biológica , Desarrollo Embrionario
13.
Forensic Sci Int Genet ; 66: 102914, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482024

RESUMEN

Human hair is often found at crime scenes, persists for a long time, and is a valuable biological specimen in forensic investigations. Hair contains minimal intact nuclear DNA for the discrimination of individual identity. In such cases, proteomics evaluation of hair proteins could provide an attractive alternative for protein-based human identification. Therefore, this study adopted a proteomic approach to profile hair shafts from both males and females across different ethnic populations including Chinese, Indians, Malays, and Filipinos in their 20-80 s. First, hair proteins were extracted by different methods to adopt the most suitable protocol that produced the highest extraction efficiency based on most significant enrichment of keratins and keratin-associated proteins. Abundance of hair keratins including both types I and II, and keratin-associated proteins, estimated using label-free quantification, showed distinguishable profiles, and the possibilities of distinguishing individuals within each ethnic origin. Similarly, several protein candidates and their abundances could be used to distinguish sex and age of individuals. This study explored the possibility of utilizing hair proteomics phenotyping in forensic science to differentiate individuals across various ethnic groups, sex and age.


Asunto(s)
Proteoma , Proteómica , Masculino , Femenino , Humanos , Proteoma/genética , Queratinas/metabolismo , Cabello/metabolismo , Demografía
14.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298186

RESUMEN

Ceramides are epidermal lipids important for normal skin barrier function. Reduced Ceramide content is associated with atopic dermatitis (AD). House dust mite (HDM) has been localized in AD skin where it plays an exacerbator role. We set to examine the impact of HDM on skin integrity and the effect of three separate Ceramides (AD™, DS, Y30) on HDM-induced cutaneous damage. The effect was tested in vitro on primary human keratinocytes and ex vivo on skin explants. HDM (100 µg/mL) decreased the expression of adhesion protein E-cadherin, supra-basal (K1, K10) and basal (K5, K14) keratins and increased matrix metallopeptidase (MMP)-9 activity. The presence of Ceramide AD™ in topical cream inhibited HDM-induced E-cadherin and keratin destruction and dampened MMP-9 activity ex vivo which was not seen for the control cream or cream containing DS or Y30 Ceramides. The efficacy of Ceramide AD™ was tested in a clinical setting on moderate to very dry skin (as surrogate for environment-induced skin damage). When applied topically for 21 days, Ceramide AD™ significantly reduced transepidermal water loss (TEWL) in patients with very dry skin compared to their TEWL baseline data. Our study demonstrates Ceramide AD™ cream to be effective in restoring skin homeostasis and barrier function in damaged skin and warrants testing in larger clinical trials for possible treatment of AD and xerosis.


Asunto(s)
Ceramidas , Dermatitis Atópica , Animales , Humanos , Ceramidas/farmacología , Pyroglyphidae , Piel/metabolismo , Dermatitis Atópica/metabolismo , Epidermis/metabolismo , Dermatophagoides pteronyssinus , Queratinas/farmacología , Emolientes/farmacología
15.
Graefes Arch Clin Exp Ophthalmol ; 261(12): 3549-3558, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37389637

RESUMEN

PURPOSE: To investigate the differentially expressed proteins (DEP) between high myopia and moderate myopia on the anterior corneal stroma. METHODS: Tandem mass tag (TMT) quantitative proteomics was utilized to reveal proteins. DEPs were screened by the multiple change of more than 1.2 times or less than 0.83 and the P value < 0.05. The DEPs were functional annotated by Gene Ontology (GO) terms. Proteins and protein interaction (PPI) networks were conducted with String online tool. Parallel reaction monitoring (PRM) data processing was used to verify the TMT proteomics results. RESULTS: There are 36 DEPs between high myopia and moderate myopia on the anterior corneal stroma, of which 11 proteins are upregulated, 25 proteins are downregulated. The GO analysis demonstrated keratinocyte migration and structural constituent of cytoskeleton that are significantly changed with most of the proteins decreased in high myopic corneas. Keratin 16 (KRT16) and erythrocyte membrane protein band 4.1-like protein 4B are the only two proteins involved in both functions. The PPI analysis showed keratin type II cytoskeletal 6A (KRT6A) and KRT16 that have strong connections. Immunoglobulin lambda variable 8-61(IGLV8-61) and nicotinamide phosphoribosyl transferase (NAMPT) have consistent results with the TMT. CONCLUSIONS: The high myopic corneas have 36 DEPs compared to the moderate myopic corneas on the anterior corneal stroma. Keratinocyte migrations and structural constituent of cytoskeleton are weakened in high myopic corneas, which may partly account for the lower corneal biomechanics in high myopic eyes. The lower expressed KRT16 plays important roles in high myopic corneas.


Asunto(s)
Sustancia Propia , Miopía , Humanos , Córnea
16.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292659

RESUMEN

Mitochondria are versatile organelles that regulate several physiological functions. Many mitochondria-controlled processes are driven by mitochondrial Ca2+ signaling. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrated that Mitochondrial Ca2+ Uniporter (MCU) is crucial for melanogenesis while the MCU rheostats, MCUb and MICU1 negatively control melanogenesis. Zebrafish and mouse models showed that MCU plays a vital role in pigmentation in vivo. Mechanistically, MCU controls activation of transcription factor NFAT2 to induce expression of three keratins (keratin 5, 7 and 8), which we report as positive regulators of melanogenesis. Interestingly, keratin 5 in turn modulates mitochondrial Ca2+ uptake thereby this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and melanogenesis. Mitoxantrone, an FDA approved drug that inhibits MCU, decreases physiological melanogenesis. Collectively, our data demonstrates a critical role for mitochondrial Ca2+ signaling in vertebrate pigmentation and reveal the therapeutic potential of targeting MCU for clinical management of pigmentary disorders. Given the centrality of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop may be functional in a variety of other pathophysiological conditions.

17.
Fish Shellfish Immunol ; 139: 108900, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315911

RESUMEN

Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-ß, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-ß, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.


Asunto(s)
Intestinos , Uniones Estrechas , Animales , Hibridación Fluorescente in Situ , Uniones Estrechas/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Mucosa Intestinal/metabolismo
18.
Head Neck Pathol ; 17(3): 599-606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37195519

RESUMEN

BACKGROUND: In head and neck squamous cell carcinoma (HNSCC), salvage neck dissection (ND) is required after primary chemoradiation in case of residual nodal disease. Upon histopathological examination, viability of tumor cells is assessed but little is known about other prognostic histopathological features. In particular, the presence of swirled keratin debris and its prognostic value is controversial. The aim of this study is to examine histopathological parameters in ND specimens and correlate them with patient outcome to determine the relevant parameters for histopathological reporting. MATERIALS AND METHODS: Salvage ND specimen from a cohort of n = 75 HNSCC (oropharynx, larynx, hypopharynx) patients with prior (chemo) radiation were evaluated on H&E stains for the following parameters: viable tumor cells, necrosis, swirled keratin debris, foamy histiocytes, bleeding residues, fibrosis, elastosis, pyknotic cells, calcification, cholesterol crystals, multinucleated giant cells, perineural, and vascular invasion. Histological features were correlated with survival outcomes. RESULTS: Only the presence / amount (area) of viable tumor cells correlated with a worse clinical outcome (local and regional recurrence-free survival, (LRRFS), distant metastasis-free survival, disease-specific survival, and overall survival, p < 0.05) in both the univariable and multivariable analyses. CONCLUSION: We could confirm the presence of viable tumor cells as a relevant negative prognostic factor after (chemo) radiation. The amount (area) of viable tumor cells further substratified patients with worse LRRFS. None of the other parameters correlated with a distinctive worse outcome. Importantly, the presence of (swirled) keratin debris alone should not be considered viable tumor cells (ypN0).


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas/diagnóstico , Pronóstico , Estudios Retrospectivos , Metástasis Linfática , Queratinas , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/patología
19.
BMC Ecol Evol ; 23(1): 7, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941546

RESUMEN

BLAST searches against the human genome showed that of the 93 keratin-associated proteins (KRTAPs) of Homo sapiens, 53 can be linked by sequence similarity to an H. sapiens metallothionein and 16 others can be linked similarly to occludin, while the remaining KRTAPs can themselves be linked to one or other of those 69 directly-linked proteins. The metallothionein-linked KRTAPs comprise the high-sulphur and ultrahigh-sulphur KRTAPs and are larger than the occludin-linked set, which includes the tyrosine- and glycine-containing KRTAPs. KRTAPs linked to metallothionein appeared in increasing numbers as evolution advanced from the deuterostomia, where KRTAP-like proteins with strong sequence similarity to their mammalian congeners were found in a sea anemone and a starfish. Those linked to occludins arose only with the later-evolved mollusca, where a KRTAP homologous with its mammalian congener was found in snails. The presence of antecedents of the mammalian KRTAPs in a starfish, a sea anemone, snails, fish, amphibia, reptiles and birds, all of them animals that lack hair, suggests that some KRTAPs may have a physiological role beyond that of determining the characteristics of hair fibres. We suggest that homologues of these KRTAPs found in non-hairy animals were co-opted by placodes, formed by the ectodysplasin pathway, to produce the first hair-producing cells, the trichocytes of the hair follicles.


Asunto(s)
Folículo Piloso , Queratinas Específicas del Pelo , Animales , Humanos , Cabello/metabolismo , Mamíferos/genética , Ocludina/metabolismo , Queratinas Específicas del Pelo/genética
20.
Br Poult Sci ; 64(1): 100-109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36069156

RESUMEN

1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.


Asunto(s)
Columbidae , Queratinas , Masculino , Femenino , Animales , Queratinas/genética , Queratinas/análisis , Columbidae/genética , Leche/química , Pollos/genética , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA