Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.032
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409789, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012726

RESUMEN

The imidophosphorane ligand, [NPtBu3]- (tBu = tert-butyl), enables isolation of a pseudo-tetrahedral, tetravalent praseodymium complex, [Pr4+(NPtBu3)4] (1-Pr), which is characterized by a suite of physical characterization methods including single-crystal X-ray diffraction, electron paramagnetic resonance, and L3-edge X-ray near-edge spectroscopies. Variable-temperature direct-current magnetic susceptibility data, supported by multiconfigurational quantum chemical calculations, demonstrate that the electronic structure diverges from the isoelectronic Ce3+ analogue, driven by increased crystal field. The four-coordinate environment around Pr4+ in 1-Pr, which is unparalleled in reported extended solid systems, provides a unique opportunity to study the interplay between crystal field splitting and spin-orbit coupling in a molecular tetravalent lanthanide within a pseudo-tetrahedral coordination geometry.

2.
Mar Pollut Bull ; 206: 116694, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002213

RESUMEN

This study explored the alteration of naturally occurring radioactive materials (NORMs: 226Ra (≈238U), 232Th, 40K) in an anthropogenically disrupted urban river-basin (Turag, Bangladesh) in terms of constitutional substances (Sc, Ti, V, Fe, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W, Th, U) of heavy-minerals. Average activity concentrations of 226Ra (≈238U), 232Th, and 40K were 41.5 ± 12.9, 72.1 ± 27.1, and 639 ± 100 Bqkg-1, respectively which were relatively higher compared to crustal origin. ∑REEs, Ta, W, Th, and U were ~2 times higher compared to crustal values with Ce and Eu-anomalies. APCS-MLR and PMF receptor models were used to determine the various anthropogenic and/or geogenic sources of NORMs and elements. Layer-wise variations of NORMs and elements were observed to trace the response of sedimentary processes towards the incoming pollution load. Presence of REEs indicates moderate degree of ecological risk to aquatic biota. However, carcinogenic risk (3.84 × 10-4 Sv-1) were significantly higher than threshold limit.

3.
Proc Natl Acad Sci U S A ; 121(32): e2322096121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078674

RESUMEN

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Elementos de la Serie de los Lantanoides/metabolismo , Elementos de la Serie de los Lantanoides/química , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética
4.
Sci Total Environ ; 949: 175063, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067591

RESUMEN

Limited knowledge exists regarding the potential risks associated with anthropogenic release of rare earth elements (REEs) in the environment. This study aimed to investigate REE signatures in the watershed Poyang Lake, the largest freshwater lake in China. Samples of surface water, wastewater, and groundwater were collected from five rivers discharging into the lake. Results revealed wastewater from wastewater treatment plants contained total REE concentrations from 231 to 904 µg/L, exceeding those found in surface water (0.4 to 1.3 µg/L) and groundwater (0.5 to 416 µg/L). Samples with elevated REE were found in Ca-Mg-Cl/SO4 type waters and exhibited an 18OD deviation from local meteoric water line. Wastewater exhibited a higher positive Gd anomaly compared to surface water and groundwater, attributed to anthropogenic input of Gd (Gdanth). The determined Gdanth concentration ranged from 0.04 to 0.21 µg/L, and from 0.06 to 0.37 µg/L, accounting for 4 % to 21 % and 49 % to 84 % of total Gd concentrations in groundwater and surface water, respectively. Gdanth concentration in wastewater (0.19 to 0.43 µg/L) remained constant in effluent after wastewater treatment. Surface water displayed relatively complex normalized REE patterns influenced by anthropogenic activities and natural processes (weathering and complexation), while groundwater exhibited heavy REEs enrichment, due to carbonate solution complexation. Additionally, Gdanth concentration showed a positive correlation with ΣREE, Pb, Ni, and Co concentrations in groundwater, indicating a good pollution tracing potential. Health risk assessment using the hazard quotient (HQ) suggested higher HQGd values in groundwater compared to surface water. Residents in the eastern part of Poyang Lake were found to face higher risks associated with Gd in groundwater compared to the western part, with infants and children at greater risk than adult males and females. These findings offer valuable insights into environmental behavior and health risks of REEs in aquatic systems impacted by human activities.

5.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38869596

RESUMEN

A new series of [Fe3-xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer's calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated.

6.
J Chromatogr A ; 1729: 465033, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38852269

RESUMEN

Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC). The method takes advantage of the subtle differences in ionic radii between neighboring REEs to tune elution rates in dilute acid through implementation of the di-(2-ethylhexyl)phosphoric acid (HDEHP)-infused stationary phase (SP) of the column. A La/Ce/Nd/Sm separation was demonstrated at a significantly higher metal loading than previously accomplished by HSCCC (15 mg, RNd/REE > 0.85), while the Pr/Nd separation was achieved at lower metal loadings (0.3 mg, RNd/Pr = 0.75 - 0.83). The challenges associated with scaling REE separations via HSCCC are presented and discussed within.


Asunto(s)
Distribución en Contracorriente , Neodimio , Distribución en Contracorriente/métodos , Neodimio/química , Neodimio/aislamiento & purificación , Organofosfatos
7.
Environ Res ; 252(Pt 4): 119140, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38751003

RESUMEN

Feather analysis is an ethical and effective method for assessing the exposure of wild birds to environmental contamination due to trace elements and organic pollutants. We used feather to monitor the exposure to three toxic and non-essential metals (Hg, Cd, and Pb) and rare earth elements (REEs) of Kentish plover (Charadrius alexandrinus) breeding in different coastal areas (Veneto, Emilia-Romagna, Marche, Abruzzo, and Apulia) along the Italian coast of the Adriatic Sea. Feathers (n = 113) were collected from April to June. Feather concentrations evidenced a significant exposure to Hg (13.05 ± 1.71 mg kg-1 dw) and REEs (447.3 ± 52.8 ng g-1 dw) in the Kentish plover breeding in Veneto (n = 21) compared to the other coastal areas, with several individuals showing Hg concentrations above the adverse effect (5 mg kg-1 dw) and high-risk (9.14 mg kg-1 dw) thresholds reported for birds. Higher REE concentrations compared to Marche (n = 29), Abruzzo (n = 11) and Apulia (n = 13) were also reported for birds breeding in Emilia-Romagna (474.9 ± 41.9 ng g-1 dw; n = 29). The exposure to Cd and Pb was low in all the coastal areas, and only a few samples (n = 6 and n = 4 for Cd and Pb, respectively) exceeded the adverse effect thresholds (0.1 and 4 mg kg-1 for Cd and Pb, respectively). A significant sex-related difference was observed for REE-concentrations, with females showing higher concentration than males. These data highlight the need to monitor the exposure of the Kentish plover to Hg and REEs, especially in the northern basin of the Adriatic Sea, since these elements might negatively affect species' reproductive success and threaten its conservation.


Asunto(s)
Charadriiformes , Monitoreo del Ambiente , Plumas , Mercurio , Metales de Tierras Raras , Animales , Italia , Plumas/química , Metales de Tierras Raras/análisis , Mercurio/análisis , Femenino , Masculino
8.
Angew Chem Int Ed Engl ; 63(30): e202401683, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38719735

RESUMEN

Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and ß-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.

9.
Angew Chem Int Ed Engl ; : e202405584, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797714

RESUMEN

Large dissymmetry factor of the circularly polarized luminescence (gCPL) was observed in ligand and coordination tuned chiral tetrakis europium (Eu(III)) complexes with ammonium cations. The gCPL value was estimated to be -1.54, which is the largest among chiral luminescent molecules. Through photophysical measurements, single crystal X-ray structural analyses and quantum chemical calculations, changes in the geometric and electronic structures were observed for a series of chiral tetrakis Eu(III) complexes which enhanced the gCPL value. The emission quantum yield and photosensitized energy transfer efficiencies of chiral Eu(III) complexes with ammonium cations were also larger than those of chiral Eu(III) complex with Cs+. Based on the systematic modifications and analyses for chiral tetrakis Eu(III) complex, effect of the ammonium cation on enhanced CPL brightness is reported.

10.
Chemistry ; 30(38): e202400900, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738452

RESUMEN

Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1 variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Endopeptidasa K/química , Endopeptidasa K/metabolismo , Elementos de la Serie de los Lantanoides/química , Cristalización , Animales , Cristalografía por Rayos X , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pollos , Proteínas/química , Proteínas/metabolismo , Complejos de Coordinación/química
11.
Adv Sci (Weinh) ; 11(24): e2308125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38610109

RESUMEN

The synthesis of lanthanide-based organometallic sandwich compounds is very appealing regarding their potential for single-molecule magnetism. Here, it is exploited by on-surface synthesis to design unprecedented lanthanide-directed organometallic sandwich complexes on Au(111). The reported compounds consist of Dy or Er atoms sandwiched between partially deprotonated hexahydroxybenzene molecules, thus introducing a distinct family of homoleptic organometallic sandwiches based on six-membered ring ligands. Their structural, electronic, and magnetic properties are investigated by scanning tunneling microscopy and spectroscopy, X-ray absorption spectroscopy, X-ray linear and circular magnetic dichroism, and X-ray photoelectron spectroscopy, complemented by density functional theory-based calculations. Both lanthanide complexes self-assemble in close-packed islands featuring a hexagonal lattice. It is unveiled that, despite exhibiting analogous self-assembly, the erbium-based species is magnetically isotropic, whereas the dysprosium-based compound features an in-plane magnetization.

12.
Small Methods ; : e2400006, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593368

RESUMEN

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.

13.
Talanta ; 274: 126054, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599122

RESUMEN

Optical thermometers based on lanthanide thermal-coupled levels have attracted great attention owing to its fundamental importance in the fields of public health, biology, and integrated circuit. However, the inherent structural properties (shielded effect on 4f configurations, intense non-radiation relaxation) strictly suppress the sensing performance, limiting the relative temperature sensitivity (SR). To circumvent these limitations, we propose an intervalence charge transfer mashup strategy by inducing d0 electron configured transition metals. Specifically, transition metals Ta5+ is incorporated in Tm3+/Eu3+:LiNbO3, which improves the SR from 5.30 to 11.16% K-1. The validity of this component-modulation behavior is observed on other oxide crystals (NaY(Mo1-zWzO4)2) as well. Furthermore, the observed regulation is well explained by DFT calculation that indicates the d-orbit component at valence band minimum remains the core factor governing the electron transfer process. We successfully relate the SR to the band structure of luminescence carrier, offering a novel perspective for the collocation design of lanthanide configurations.

14.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38604136

RESUMEN

Remote thermal sensing has emerged as a temperature detection technique for tasks in which standard contact thermometers cannot be used due to environment or dimension limitations. One of such challenging tasks is the measurement of temperature in microelectronics. Here, optical thermometry using co-doped and mixed dual-center Gd2O3:Tb3+/Eu3+samples were realized. Ratiometric approach based on monitoring emission intensities of Tb3+(5D4-7F5) and Eu3+(5D0-7F2) transition provided sensing in the range of 30 °C-80 °C. Dispersion system type only slightly affected relative sensitivity, accuracy and precision. The applicability of phosphors synthesized to be utilized as remote optical thermometers for microelectronics has been proved with an example on a surface mount resistor and microcontroller.

15.
Front Chem ; 12: 1379587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633984

RESUMEN

We report the synthesis and single-crystal X-ray diffraction, magnetic, and luminescence measurements of a novel family of luminescent cage-like tetranuclear silsesquioxanes (PhSiO1.5)8(LnO1.5)4(O)(C5H8O2)6(EtOH)2(CH3CN)2⋅2CH3CN (where Ln = Tb, 1; Tb/Eu, 2; and Gd, 3), featuring seven-coordinated lanthanide ions arranged in a one-capped trigonal prism geometry. Compounds 1 and 2 exhibit characteristic Tb3+ and Tb3+/Eu3+-related emissions, respectively, sensitized by the chelating antenna acetylacetonate (acac) ligands upon excitation in the UV and visible spectral regions. Compound 3 is used to assess the energies of the triplet states of the acac ligand. For compound 1, theoretical calculations on the intramolecular energy transfer and multiphonon rates indicate a thermal balance between the 5D4 Stark components, while the mixed Tb3+/Eu3+ analog 2, with a Tb:Eu ratio of 3:1, showcases intra-cluster Tb3+-to-Eu3+ energy transfer, calculated theoretically as a function of temperature. By utilizing the intensity ratio between the 5D4→7F5 (Tb3+) and 5D0→7F2 (Eu3+) transitions in the range 11-373 K, we demonstrate the realization of a ratiometric luminescent thermometer with compound 2, operating in the range 11-373 K with a maximum relative sensitivity of 2.0% K-1 at 373 K. These findings highlight the potential of cage-like silsesquioxanes as versatile materials for optical sensing-enabled applications.

16.
Chemistry ; 30(33): e202400680, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38593232

RESUMEN

Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.


Asunto(s)
Europio , Hidrogeles , Europio/química , Hidrogeles/química , Luminiscencia , Iminoácidos/química , Reología , Sustancias Luminiscentes/química , Ligandos , Geles/química
17.
Environ Manage ; 73(6): 1201-1214, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573351

RESUMEN

Artisanal mining is intensely carried out in developing countries, including Brazil and especially in the Amazon. This method of mineral exploration generally does not employ mitigation techniques for potential damages and can lead to various environmental problems and risks to human health. The objectives of this study were to quantify the concentrations of rare earth elements (REEs) and estimate the environmental and human health risks in cassiterite and monazite artisanal mining areas in the southeastern Amazon, as well as to understand the dynamics of this risk over time after exploitation. A total of 35 samples of wastes classified as overburden and tailings in active areas, as well as in areas deactivated for one and ten years were collected. Samples were also collected in a forest area considered as a reference site. The concentrations of REEs were quantified using alkaline fusion and ICP-MS. The results were used to calculate pollution indices and environmental and human health risks. REEs showed higher concentrations in anthropized areas. Pollution and environmental risk levels were higher in areas deactivated for one year, with considerable contamination factors for Gd and Sm and significant to extreme enrichment factors for Sc. Human health risks were low (< 1) in all studied areas. The results indicate that artisanal mining of cassiterite and monazite has the potential to promote contamination and enrichment by REEs.


Asunto(s)
Metales de Tierras Raras , Minería , Metales de Tierras Raras/análisis , Humanos , Brasil , Medición de Riesgo , Monitoreo del Ambiente
18.
J Hazard Mater ; 471: 134418, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688225

RESUMEN

The emergence of mining projects for rare earth elements (REEs) in response to rising global demand and geopolitical factors introduces environmental concerns, such as the suspected release of anthropogenic REEs to aquatic systems and the coexistence of radionuclides (U, Th). Northern regions confront heightened challenges from limited research and accelerated climate change. Drivers of REEs in surface waters (including George and Koroc rivers, their tributaries, and thermokarst lakes) were studied (2017-2023) in subarctic Canada within a climate transition zone, near a prospective REE mine. Dissolved REEs (<0.45 µm) correlated positively with Al, Fe, Th, U, Cl- and DOC. A novel relationship with water temperature demonstrated an approximate 10-fold decrease in REE concentrations over the environmental gradient (2-20 ℃), suggesting complex implications for REE speciation under climate pressures. Optical analyses further predicted REEs were mobilized by humic-rich, terrestrial DOC, with correlations presenting a possible co-transport with Al, Fe and Th. Relationships for redox-sensitive Ce anomalies (Ce/Ce* = 0.18-1.2) with multi-valent trace metals (Al, Fe, Ti) and DOC were suggestive of a preferential adsorption of Ce by inorganic colloids in low-DOC systems. Findings emphasized the potential for changes in REE geochemistry with ongoing northern surface warming and vegetation shifts.

19.
Chemosphere ; 357: 142090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648983

RESUMEN

The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.


Asunto(s)
Lantano , Metales de Tierras Raras , Metales de Tierras Raras/química , Humanos , Lantano/química , Animales , Cerio/química , Gadolinio/química , Sustancias Macromoleculares/química
20.
Adv Healthc Mater ; : e2400372, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630101

RESUMEN

Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA