Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124949, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153344

RESUMEN

A nonparametric point-by-point (NPP) method is presented for high-accuracy measurement of the time-dependent frequency (laser frequency) in tunable laser absorption spectroscopy, crucial for ensuring ultimate measurement accuracy. In wavelength modulation spectroscopy in particular, the parametric methods in current use for time-dependent frequency measurement are insufficiently accurate and are difficult to apply to complex modulation scenarios. Based on a multi-scale viewpoint, point-by-point measurement of the frequency is realized by linear superposition of the frequency information mapped from the interferometric signal on a unit scale and on a local scale. Validation experiments indicate that the measurement accuracy of the proposed NPP method is three times that of the existing parametric methods, while effectively immunizing against non-ideal tuning effects. Additionally, the NPP method is suitable for use with arbitrarily complex modulations such as square wave modulation, for which parametric methods are inapplicable.

2.
Appl Spectrosc ; : 37028241268279, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091033

RESUMEN

A new optical diagnostic method that predicts the global fuel-air equivalence ratio of a swirl combustor using absorption spectra from only three optical paths is proposed here. Under normal operation, the global equivalence ratio and total flow rate determine the temperature and concentration fields of the combustor, which subsequently determine the absorption spectra of any combustion species. Therefore, spectra, as the fingerprint for a produced combustion field, were employed to predict the global equivalence ratio, one of the key operational parameters, in this study. Specifically, absorption spectra of water vapor at wavenumbers around 7444.36, 7185.6, and 6805.6 cm-1 measured at three different downstream locations of the combustor were used to predict the global equivalence ratio. As it is difficult to find analytical relationships between the spectra and produced combustion fields, a predictive model was a data-driven acquisition. The absorption spectra as an input were first feature-extracted through stacked convolutional autoencoders and then a dense neural network was used for regression prediction between the feature scores and the global equivalence ratio. The model could predict the equivalence ratio with an absolute error of ±0.025 with a probability of 96%, and a gradient-weighted regression activation mapping analysis revealed that the model leverages not only the peak intensities but also the variations in the shape of absorption lines for its predictions.

3.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38544105

RESUMEN

This paper presents the description of the wavelength modulation spectroscopy (WMS) experiment, the parameters of which were established by use of the Artificial Intelligence (AI) algorithm. As a result, a significant improvement in the signal power to noise power ratio (SNR) was achieved, ranging from 1.6 to 6.5 times, depending on the harmonic. Typically, optimizing the operation conditions of WMS-based gas sensors is based on long-term simulations, complex mathematical model analysis, and iterative experimental trials. An innovative approach based on a biological-inspired genetic algorithm (GA) and custom-made electronics for laser control is proposed. The experimental setup was equipped with a 31.23 m Heriott multipass cell, software lock-in, and algorithms to control the modulation process of the quantum cascade laser (QCL) operating in the long-wavelength-infrared (LWIR) spectral range. The research results show that the applied evolutionary approach can efficiently and precisely explore a wide range of WMS parameter combinations, enabling researchers to dramatically reduce the time needed to identify optimal settings. It took only 300 s to test approximately 1.39 × 1032 combinations of parameters for key system components. Moreover, because the system is able to check all possible component settings, it is possible to unquestionably determine the operating conditions of WMS-based gas sensors for which the limit of detection (LOD) is the most favorable.

4.
Sensors (Basel) ; 24(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38400465

RESUMEN

Observing the vertical diffusion distribution of methane fugitive emissions from oil/gas facilities is significant for predicting the pollutant's spatiotemporal transport and quantifying the random emission sources. A method is proposed for methane's vertical distribution mapping by combining the laser path-integral sensing in non-non-cooperative open paths and the computer-assisted tomography (CAT) techniques. It uses a vertical-plume-mapping optical path configuration and adapts the developed dynamic relaxation and simultaneous algebraic reconstruction technique (DR-SART) into methane-emission-distribution reconstruction. A self-made miniaturized TDLAS telemetry sensor provides a reliable path to integral concentration information in non-non-cooperative open paths, with Allan variance analysis yielding a 3.59 ppm·m sensitivity. We employed a six-indexes system for the reconstruction performance analysis of four potential optical path-projection configurations and conducted the corresponding validation experiment. The results have shown that that of multiple fan-beams combined with parallel-beam modes (MFPM) is better than the other optical path-projection configurations, and its reconstruction similarity coefficient (ε) is at least 22.4% higher. For the different methane gas bag-layout schemes, the reconstruction errors of maximum concentration (γm) are consistently around 0.05, with the positional errors of maximum concentration (δ) falling within the range of 0.01 to 0.025. Moreover, considering the trade-off between scanning duration and reconstruction accuracy, it is recommended to appropriately extend the sensor measurement time on a single optical path to mitigate the impact of mechanical vibrations induced by scanning motion.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123864, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38217990

RESUMEN

We report a mid-infrared quantum cascade laser absorption sensor capable of measuring SO2 and SO3 simultaneously and sensitively at elevated temperatures. In the sensor development, the intense transitions of SO2 and SO3 in the mid-infrared region of 1129 cm-1 and 1398 cm-1 were exploited by two quantum cascade lasers. A high-temperature multipass cell was adopted to increase the absorption path length to 10 m. The quantitative concentrations of SOx were directly obtained from the calibration-free wavelength modulation spectroscopic method, which was validated at varied temperature and pressure conditions. From Allan deviation analysis, we achieved a minimum detection limit of 8 parts per billion (ppb) for SO2 and 3 ppb for SO3, with an average time of 100 s. Lastly, we successfully demonstrated the real-time and sensitive measurement of SO2 and SO3 during the oxidation reaction of SO2 by O3 at 460 K. Our laser sensor shows great potential for in-situ and real-time monitoring of SOx from combustion emissions.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123750, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113557

RESUMEN

The simultaneous detection of fractional exhaled nitric oxide (FeNO) and end-tidal carbon dioxide (ETCO2) is of great importance for the distinguishing and diagnosis of asthma and chronic obstructive pulmonary disease (COPD), providing more comprehensive information on respiratory disorders. This work demonstrates a simultaneous ETCO2 and FeNO detection system based on quantum cascade laser absorption spectroscopy (QCLAS) technology was presented. The system employs wavelength modulation spectroscopy (WMS) technology and the Herriott multi-pass cell, achieving a detection limit of 2.82 ppb for nitric oxide (NO) and 0.05 % for carbon dioxide (CO2). Real-time exhalation measurements were performed on volunteers with varying ETCO2 and FeNO levels, and the results of the test can accurately distinguish whether the corresponding volunteer was healthy, had asthma or COPD. The effect of exhalation flow rate on the concentration of the two gases was explored. A range of expiratory flow rates were tested in the flow rate interval from 1 to 4 L/min, and there was always an inverse relationship between expiratory flow rate and FeNO concentration, but flow rate changes did not affect ETCO2 concentration. The results indicate that this detection system can simultaneously and effectively measure ETCO2 and FeNO concentrations in real-time.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Dióxido de Carbono , Prueba de Óxido Nítrico Exhalado Fraccionado , Láseres de Semiconductores , Pruebas Respiratorias/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Asma/diagnóstico , Óxido Nítrico , Análisis Espectral
7.
J Biomed Opt ; 28(11): 115003, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078155

RESUMEN

Significance: The gas in scattering media absorption spectroscopy (GASMAS) technique has the potential for continuous, clinical monitoring of preterm infant lung function, removing the need for X-ray diagnosis and reliance on indirect and relatively slow measurement of blood oxygenation. Aim: We aim to determine the optimal source-detector configuration for reliable pathlength calculation and to estimate the oxygen gas concentration inside the lung cavities filled with humidified gas with four different oxygen gas concentrations ranging between 21% and 100%. Approach: Anthropomorphic optical phantoms of neonatal thorax with two different geometries were used to acquire GASMAS signals, for 30 source-detector configurations in transmittance and remittance geometry of phantoms in two sizes. Results: The results show that an internal light administration is more likely to provide a high GASMAS signal-to-noise ratio (SNR). In general, better SNRs were obtained with the smaller set of phantoms. The values of pathlength and O2 concentrations calculated with signals from the phantoms with optical properties at 820 nm exhibit higher variations than signals from the phantoms with optical properties at 764 nm. Conclusion: Our study shows that, by moving the source and detector over the thorax, most of the lung volumes can potentially be assessed using the GASMAS technique.


Asunto(s)
Recien Nacido Prematuro , Oxígeno , Recién Nacido , Humanos , Análisis Espectral/métodos , Fantasmas de Imagen , Gases , Pulmón/diagnóstico por imagen , Rayos Láser
8.
Micromachines (Basel) ; 14(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004922

RESUMEN

Modulated laser absorption spectroscopy is an ideal technique for evaluating flow-field parameters and determining flow-field quality by measuring the atoms dissociated in high-temperature environments. However, to obtain the absolute number density of atoms in the flow field, it is necessary to compare the measured modulated absorption spectroscopy signal with a known atomic concentration and establish a quantitative relationship through concentration calibration. Nevertheless, it remains a challenging task to prepare transient atomic samples with known concentrations that meet the calibration requirements. This study utilized the alternating-current glow discharge technique to dissociate oxygen in the air flow, resulting in the continuous generation of oxygen atoms. The absolute number densities of the generated oxygen atoms were determined by measuring the direct absorption spectra of centered on 777 nm for oxygen atoms. The number densities of the generated atoms were finely tuned by adjusting the discharge parameters. Throughout the 120-min continuous operation of the discharge system, the concentration of excited-state oxygen atoms remained stable within the range of (2.51 ± 0.02) × 108 cm-3, demonstrating the remarkable stability of the transient atomic concentration generated by the glow discharge plasma. This observation suggests that the generated atoms can be utilized as a standardized atomic sample of known concentration for absolute concentration calibration purposes.

9.
Appl Spectrosc ; 77(12): 1362-1370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847076

RESUMEN

Recently, high-throughput quantum cascade laser-based vibrational circular dichroism (QCL-VCD) technology has reduced the measurement time for high-quality vibrational circular dichroism spectra from hours to a few minutes. This study evaluates QCL-VCD for chiral monitoring using flow-through measurement of a changing sample in a circulating loop. A balanced detection QCL-VCD system was applied to the enantiomeric pair R/S-1,1'-bi-2-naphthol in solution. Different mixtures of the two components were used to simulate a racemization process, collecting spectral data at a time resolution of 6 min, and over three concentration levels. The goal of this experimental setup was to evaluate QCL-VCD in terms of both molar and enantiomeric excess (EE) sensitivity at a time resolution relevant to chiral monitoring in chemical processes. Subsequent chemometric evaluation by partial least squares regression revealed a cross-validated prediction accuracy of 2.8% EE with a robust prediction also for the test data set (error = 3.5% EE). In addition, the data set was also treated with the least absolute shrinkage and selection operator (LASSO), which also achieved a robust prediction. Due to the operating principle of LASSO, the obtained coefficients constituted a few discrete spectral frequencies, which represent the most variance. This information can be used in the future for dedicated QCL-based instrument design, gaining a higher time resolution without sacrificing predictive capabilities.

10.
Heliyon ; 9(9): e19421, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37681165

RESUMEN

The ground diffusion characteristics of buried oil pipeline after leakage and the laser optical transmission mechanism of surface oil film are the basis of spectral detection technology. Based on the computational fluid dynamics to solve the diffusion equation of multiphase flow in porous media, the leakage law of oil under different soil porosity is analyzed in two dimensions: surface diffusion diameter and oil film thickness. TracePro optical simulation is used to study the absorption and reflection patterns of laser at the oil-gas interface, and validation experiments are carried out based on the tunable diode laser absorption spectroscopy method. The results show that oil is easily accumulated on the ground surface with larger soil porosity and in the depressions of the ground surface. When the oil film thickness is greater than 2 mm, the laser cannot transmit the oil layer and the received light intensity is only provided by the mirror reflection at the oil-gas interface. The mechanism of laser detection of oil leaks is the spectral absorption of volatile alkane gases in the upper layer of the oil film by a laser of a specific wavelength.

11.
Appl Spectrosc ; 77(10): 1194-1205, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37545393

RESUMEN

We propose a novel technique to accurately predict carbon dioxide (CO2) concentrations even in flow fields with temperature gradients based on a single laser path absorption spectrum measurement and machine learning. Concentration measurements in typical tunable diode laser absorption spectroscopy are based on a ratio of two integrated absorbances, each from a spectral line with different temperature dependence. However, the inferred concentrations can deviate significantly from the actual concentrations in the presence of temperature gradients. Furthermore, it is also difficult to find an analytical expression to compensate for the effect of nonuniform temperature profiles on concentration measurements. In this study, the entire absorption feature was considered since its shape and peak intensities vary with temperature and concentration. Specifically, a predictive model is obtained in a data-driven manner that can identify and compensate for the effect of a nonuniform temperature field on the spectrum. Despite a very detailed understanding of the CO2 absorption spectrum, it is nearly impossible to collect sufficient spectra for model acquisition by varying all temperature gradient conditions. Therefore, the model was obtained using only simulated data, much like the concept of a "digital twin". Finally, the predictive performance of the acquired model was verified using experimental data. In all test cases, the predictive performance of the model was superior to that of the two-line method. Additionally, a gradient-weighted regression activation mapping analysis confirmed that the model utilizes both the peak intensities as well as the change in the shape of absorption lines for prediction.

12.
J Biophotonics ; 16(12): e202300198, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37643222

RESUMEN

The review is aimed on the analysis the abilities of noninvasive diagnostics and monitoring of diabetes mellitus (DM) and DM-associated complications through volatile molecular biomarkers detection in the exhaled breath. The specific biochemical reactions in the body of DM patients and their associations with volatile molecular biomarkers in the breath are considered. The applications of optical spectroscopy methods, including UV, IR, and terahertz spectroscopy for DM-associated volatile molecular biomarkers measurements, are described. The applications of similar technique combined with machine learning methods in DM diagnostics using the profile of DM-associated volatile molecular biomarkers in exhaled air or "pattern-recognition" approach are discussed.


Asunto(s)
Diabetes Mellitus , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Pruebas Respiratorias/métodos , Diabetes Mellitus/diagnóstico , Espiración , Análisis Espectral , Biomarcadores
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123044, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37354856

RESUMEN

The measurement of the line positions and effective line strengths of the ν3 fundamental band of trans-nitrous acid (trans-HONO) near 1280 cm-1 (7.8 µm) by tunable laser absorption spectroscopy (TLAS) utilizing a room temperature continuous-wave quantum cascade laser (cw-QCL) was reported. The effective line strengths of 30 well-resolved trans-HONO absorption lines in the range of 1279.8-1282.2 cm-1 were determined using the HONO line strength at 1280.3841 cm-1 as a scale. The maximum measurement uncertainty of 7.64% in the line strengths is mainly determined by the uncertainty of the referenced line strength, while the measurement precision of the line positions is better than 5.56 * 10-3 cm-1. The line positions and strengths of the trans-HONO absorption lines obtained in this work provide a reference for continuous gas monitoring and analysis of the sources and sinks of atmospheric HONO.

14.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262105

RESUMEN

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Asunto(s)
Fibrosis Quística , Humanos , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria/métodos , Pulmón , Respiración
15.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177547

RESUMEN

The use of optical circular multipass absorption cells (CMPAC) in an open-path configuration enables the sampling free analysis of cylindrical gas flows with high temporal resolution and only minimal disturbances to the sample gas in the pipe. Combined with their robust unibody design, CMPACs are a good option for many applications in atmospheric research and industrial process monitoring. When deployed in an open-path configuration, the effects of inhomogeneities in the gas temperature and composition have to be evaluated to ensure that the resulting measurement error is acceptable for a given application. Such an evaluation needs to consider the deviations caused by spectroscopic effects, e.g., nonlinear effects of temperature variations on the intensity of the spectral line, as well as the interaction of the temperature and concentration field with the characteristic laser beam pattern of the CMPAC. In this work we demonstrate this novel combined evaluation approach for the CMPAC used as part of the tunable diode laser absorption spectroscopy (TDLAS) reference hygrometer in PTB's dynH2O setup for the characterization of the dynamic response behavior of hygrometers. For this, we measured spatially resolved, 2D temperature and H2O concentration distributions, and combined them with spatially resolved simulated spectra to evaluate the inhomogeneity effects on the line area of the used H2O spectral line at 7299.43 cm-1. Our results indicate that for dynH2O, the deviations caused by the interaction between large concentration heterogeneities and the characteristic sampling of the beam pattern of the CMPAC are three orders of magnitude larger than deviations caused by small temperature heterogeneity induced spectroscopic effects. We also deduce that the assumption that the "path-integrated" H2O concentration derived with the open-path CMPAC setup represents an accurate H2O area average in the flow section covered by the CMPAC in fact shows significant differences of up to 16% and hence does not hold true when large H2O concentration gradients are present.

16.
Sci Total Environ ; 884: 163799, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127165

RESUMEN

This study reports on the field testing of a newly and originally designed laser absorption spectroscopy chamber (LASC) system based on closed dynamic chamber method, which is well suited for multi-point synchronous measurement of ammonia emissions in field multiple plot experiment. Main design feature of the LASC system is individual multi-reflection cells for each chamber, achieving the synchronous in-situ monitoring ammonia emissions of all the chambers. Two movable covers for automated opening and closing of the chamber, and the highly transparent chamber walls made of acrylic plate minimize the disturbance of the chamber deployment on the ammonia transport process in the chamber. Controlled field assessment experiment was conducted to evaluate the applicability and reliability of the LASC system. The results indicated that the optimum time length of chamber closure for monitoring ammonia emission is 3 min, and the appropriate time length of chamber ventilation is 17 to 37 min. The LASC system has higher accuracy for measuring ammonia emission rate and reliability for comparatively measuring ammonia emissions from different treatments than the traditional chamber methods.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Amoníaco/análisis , Contaminantes Atmosféricos/análisis , Reproducibilidad de los Resultados , Análisis Espectral , Rayos Láser , Monitoreo del Ambiente/métodos
17.
Heliyon ; 9(2): e13677, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36879754

RESUMEN

A highly sensitive dual-gas sensor based on a two-channel multipass cell (MPC) was designed and developed for simultaneous detection of atmospheric methane (CH4) and carbon dioxide (CO2) by using two distributed feedback lasers emitting at 1653 nm and 2004 nm. The nondominated sorting genetic algorithm was applied to intelligently optimize the MPC configuration and accelerate the dual-gas sensor design process. A compact and novel two-channel MPC was used to achieve two optical path lengths of 27.6 m and 2.1 m in a small volume of 233 cm3. Simultaneous measurements of CH4 and CO2 in the atmosphere were performed to demonstrate the stability and robustness of the gas sensor. According to the Allan deviation analysis, the optimal detection precision for CH4 and CO2 was 4.4 ppb at an integration time of 76 s and 437.8 ppb at an integration time of 271 s, respectively. The newly developed dual-gas sensor exhibits superior characteristics of high sensitivity and stability, cost-effectiveness and simple structure, which make it well-suited for multiple trace gas sensing in various applications, including environmental monitoring, safety inspections and clinical diagnosis.

18.
Sensors (Basel) ; 23(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36850670

RESUMEN

We designed a tunable diode laser absorption spectroscopy (TDLAS) sensor for the online monitoring of CO2 and H2O concentrations. It comprised a small self-design multi-pass cell, home-made laser drive circuits, and a data acquisition circuit. The optical and electrical parts and the gas circuit were integrated into a portable carrying case (height = 134 mm, length = 388 mm, and width = 290 mm). A TDLAS drive module (size: 90 mm × 45 mm) was designed to realize the function of laser current and temperature control with a temperature control accuracy of ±1.4 mK and a current control accuracy of ±0.5 µA, and signal acquisition and demodulation. The weight and power consumption of the TDLAS system were only 5 kg and 10 W, respectively. Distributed feedback lasers (2004 nm and 1392 nm) were employed to target CO2 and H2O absorption lines, respectively. According to Allan analysis, the detection limits of CO2 and H2O were 0.13 ppm and 3.7 ppm at an average time of 18 s and 35 s, respectively. The system response time was approximately 10 s. Sensor performance was verified by measuring atmospheric CO2 and H2O concentrations for 240 h. Experimental results were compared with those obtained using a commercial instrument LI-7500, which uses non-dispersive infrared technology. Measurements of the developed gas analyzer were in good agreement with those of the commercial instrument, and its accuracy was comparable. Therefore, the TDLAS sensor has strong application prospects in atmospheric CO2 and H2O concentration detection and ecological soil flux monitoring.

19.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679417

RESUMEN

A new version of a sensor for temperature measurements in the case of strong laser intensity fluctuation was developed. It was based on tunable diode laser absorption spectroscopy (TDLAS) with wavelength modulation, logarithmic conversion of the absorption signal, and detection of the first harmonic of the modulation frequency. The efficiency of the technique was demonstrated under experimental conditions with excess multiplicative noise. Temperature was evaluated from the ratio of integrated absorbance of two lines of the water molecule with different lower energy levels. Two algorithms of data processing were tested, simultaneous fitting of two spectral ranges with selected absorption lines and independent fitting of two absorption lines profiles. The correctness of the gas temperature evaluation was verified by simultaneous measurements with a commercial thermocouple. An error in temperature evaluation of less than 40 at 1000 K was achieved even when processing a single scan of the diode lasers.


Asunto(s)
Algoritmos , Láseres de Semiconductores , Temperatura , Análisis Espectral , Agua
20.
Appl Spectrosc ; 77(4): 335-349, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36443643

RESUMEN

A tunable diode laser absorption spectroscopy (TDLAS) device has been developed to study long-path atmospheric transmission near diode pumped alkali laser (DPAL) emission wavelengths. By employing a single aperture and retro reflector in a mono-static configuration, the noise associated with atmospheric and platform jitter were reduced by a factor of ∼30 and the open-air path length was extended to 4.4 km and over a very broad spectral range, up to 120 cm-1. Water vapor absorption lines near the rubidium (Rb) and cesium (Cs) variants of the DPAL near 795 and 894 nm, oxygen lines near the potassium (K) DPAL near 770 nm, and water vapor absorption in the vicinity of the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser 1.064 µm and chemical oxygen iodine laser (COIL) 1.3 µm lines were studied. The detection limit for path absorbance increases from ΔA = 0.0017 at 100 m path length to 0.085 for the 4.4 km path. Comparison with meteorological instruments for maritime and desert environments yields agreement for the 2.032 km path to within 1.5% for temperature, 4.5% for pressure, and 5.1% for concentration, while agreements for the 4.4 km path are within 1.4% for temperature, 7.7% for pressure, and 23.5% for concentration. An intra cavity output spectroscopy (ICOS) device was also used as a spectral reference to verify location of atmospheric lines. Implications of TDLAS collection system design on signal-to-noise (S/N) are discussed as well as the effect of path turbulence on baseline noise and inform the selection of the DPAL variant least affected by molecular absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA