Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.171
Filtrar
1.
Front Insect Sci ; 4: 1426715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386346

RESUMEN

Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.

2.
R Soc Open Sci ; 11(10): 240653, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39386988

RESUMEN

Rising temperatures can adversely affect parental care and reproductive performance across a range of taxa. However, the warming impact is contingent upon understanding how temperature affects the spectrum of parental behaviours and their interplay. Here, we assessed how temperature affects parental care and reproductive success in the burying beetle, Nicrophorus nepalensis, which exhibits complex parental care behaviours. We exposed breeding pairs of N. nepalensis, to three temperature regimes (18°C, 20°C and 22°C) and assessed changes in parental care, and the subsequent development and growth of their offspring. Our findings show that 22°C disrupts carcass nest building by the parents and results in smaller clutches. Moreover, no eggs successfully hatched in the 22°C treatment. A milder increase to 20°C did not affect the hatching rate but resulted in smaller broods and lighter offspring, even when considering brood size, suggesting a change in post-hatching care quality. Our research suggests that warming may weakly affect parental care but has strong detrimental effects on offspring performance. These findings highlight the necessity of investigating the effect of ambient temperature across a diversity of traits and behaviours and across a range of life-history stages to fully assess species vulnerability in the face of future climate change.

3.
Glob Chang Biol ; 30(10): e17522, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39360459

RESUMEN

Climate change is causing an intensification of soil drying and rewetting events, altering microbial functioning and potentially destabilizing soil organic carbon. After rewetting, changes in microbial community carbon use efficiency (CUE), investment in life history strategies, and fungal to bacterial dominance co-occur. Still, we have yet to generalize what drives these dynamic responses. Here, we collated 123 time series of microbial community growth (G, sum of fungal and bacterial growth, evaluated by leucine and acetate incorporation, respectively) and respiration (R) after rewetting and calculated CUE = G/(G + R). First, we characterized CUE recovery by two metrics: maximum CUE and time to maximum CUE. Second, we translated microbial growth and respiration data into microbial investments in life history strategies (high yield (Y), resource acquisition (A), and stress tolerance (S)). Third, we characterized the temporal change in fungal to bacterial dominance. Finally, the metrics describing the CUE recovery, investment in life history strategies, and fungal to bacterial dominance after rewetting were explained by environmental factors and microbial properties. CUE increased after rewetting as fungal dominance declined, but the maximum CUE was explained by the CUE under moist conditions, rather than specific environmental factors. In contrast, higher soil pH and carbon availability accelerated the decline of microbial investment in stress tolerance and fungal dominance. We conclude that microbial CUE recovery is mostly driven by the shifting microbial community composition and the metabolic capacity of the community, whereas changes in microbial investment in life history strategies and fungal versus bacterial dominance depend on soil pH and carbon availability.


Asunto(s)
Carbono , Cambio Climático , Hongos , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Hongos/fisiología , Hongos/metabolismo , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Microbiota , Concentración de Iones de Hidrógeno
4.
Sci Total Environ ; 954: 176680, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366579

RESUMEN

Co-contamination of carbendazim (CBD) and deoxynivalenol (DON) is common in agricultural soils, yet their ecological impact on soil microbiome remains poorly assessed. Here, we investigated the influence of CBD and DON on the structure, function, and co-occurrence networks of soil microbiome. The combined treatment of CBD and DON significantly exacerbated the negative impacts on soil microbial diversity, functional diversity, and microbial network stability compared to individual treatments. Specifically, Lysobacter, Gemmatimonas, Nitrospira, Massilia, and Bacillus were identified as indicator species for CBD and DON. Simultaneously, the abundance of genes involved in key ecological functions, such as nitrification (amoA) and organic phosphorus mineralization (phoAD), was significantly reduced. Notably, key bacterial taxa Nitrospira and Gemmatimonas, with K-life history strategy and capabilities for nitrification and organic nitrogen mineralization, played crucial roles in promoting positive interactions in networks. Furthermore, variance partitioning analysis (VPA) and structural equation modeling (SEM) demonstrated that the abundance and niche breadth of key bacterial taxa were the primary drivers of microbial network stability. In conclusion, our study provides new insights into how soil microbiomes and networks respond to pesticides and mycotoxins, aiding in a more comprehensive assessment of exposure risks.

5.
Mol Ecol ; : e17541, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367587

RESUMEN

The role of epigenetics in regulating caste polyphenism in social insects has been debated. Here, we tested the importance of histone de/acetylation processes for the maintenance of queen hallmarks like a high fecundity and a long lifespan. To this end, we performed RNA interference experiments against histone deacetylase 3 (HDAC3) in the termite Cryptotermes secundus. Fat body transcriptomes and chemical communication profiles revealed that silencing of HDAC3 leads to signals indicative of queen hallmarks. This includes fostering of queen signalling, defence against ageing and a reduction of life-shortening IIS (insulin/insulin-like growth factor signalling) and endocrine JH (juvenile hormone) signalling via Kr-h1 (Krüppel-homologue 1). These observed patterns were similar to those of a protein-enriched diet, which might imply that histone acetylation conveys nutritional effects. Strikingly, in contrast to solitary insects, reduced endocrine JH signalling had no negative effect on fecundity-related vitellogenesis in the fat bodies. This suggests an uncoupling of longevity pathways from fecundity in fat bodies, which can help explain queens' extraordinary lifespans combined with high fecundity.

6.
J Evol Biol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352263

RESUMEN

Animal nests provide a beneficial environment for offspring development and as such contribute to fitness. Gathering and transporting materials to construct nests is energetically costly, but the life history trade-offs associated with the types of nests built are largely unknown. Who contributes to building the nest could also mediate these trade-offs, as building a nest as a couple is expected to be less costly per individual than building alone. Using a comparative analysis on 227 songbird species globally, we found a fecundity cost associated with the type of nest a species builds. Species that build domed nests produce fewer broods per year than species building cups or platforms. Dome nesting species also have larger clutch sizes than open nesting species, but only when the nest is built by a couple and not when females build nests alone. This suggests that building domed nests represents a trade-off with investment in young, especially when females are solely responsible for nest building. More broadly, our results could explain macroevolutionary patterns, such as the recent finding that females, building on their own, more often build open cup rather than domed nests.

7.
J Anim Ecol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354658

RESUMEN

Potential immortality is observed in several species (e.g. prickly pear cactus, hydra and flatworms) and is indicative of their negligible or even negative senescence rates. Unlike in senescent species, which experience reduced individual performance with age due to physiological degradation, species with negligible or negative senescence display mortality rates that remain constant or decline with age, respectively. These rates vary across taxa and are correlated with life history traits. Yet, the extent to which variable resource availability, a key driver of variation in life history traits, impacts species that show negligible or negative senescence is currently unknown. Here, we examine whether and how variation in the quantity, quality and feeding interval of resources impact population structure, population performance and life history trait trade-offs in two long-lived planaria that do not senesce: Schmidtea mediterranea and Dugesia tahitiensis. In a full factorial design, different combinations of resource quantity (reduced intake, standard intake and high intake) and quality (high and low quality) were provided in two different feeding intervals (7-day and 14-day intervals) for 19 weeks. We show that variability in resource availability, via decreases in quantity, quality and frequency of resources, does not diminish population viability in either species but does result in suboptimal conditions of stress in S. mediterranea. The high population viability we report can be attributed to two different mechanisms: increased reproduction or increased investment into maintenance at the expense of reproduction. Moreover, which mechanism was responsible for said high population viability was context-dependent and modulated by the specific life history strategy of the two planaria species. We show that suboptimal conditions can cause stress responses that have significant impacts on non-senescent species. The context-dependent response we observe suggests that species that do not senesce but are subject to suboptimal conditions of stress may ultimately exhibit declines in performance and ultimately die. A clearer understanding of the impact of suboptimal conditions of resource availability on non-senescent species is needed to determine the extent of stress experienced and ultimately whether a species can truly be immortal.

8.
Ecol Lett ; 27(9): e14511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354891

RESUMEN

Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased 'gene expression' in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.


Asunto(s)
Cambio Climático , Temperatura , Animales , Organismos Acuáticos/fisiología
9.
Ecol Lett ; 27(9): e14500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354911

RESUMEN

The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.


Asunto(s)
Árboles , Clima Tropical , Árboles/crecimiento & desarrollo , Cambio Climático , Reproducción , Bosques
10.
New Phytol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351620

RESUMEN

Increasing genome size (GS) has been associated with slower rates of DNA replication and greater cellular nitrogen (N) and phosphorus demands. Despite most plant species having small genomes, the existence of larger GS species suggests that such costs may be negligible or represent benefits under certain conditions. Focussing on the widespread and diverse grass family (Poaceae), we used data on species' climatic niches and growth rates under different environmental conditions to test for growth costs or benefits associated with GS. The influence of photosynthetic pathway, life history and evolutionary history on grass GS was also explored. We found that evolutionary history, photosynthetic pathway and life history all influence the distribution of grass species' GS. Genomes were smaller in annual and C4 species, the latter allowing for small cells necessary for C4 leaf anatomy. We found larger GS were associated with high N availability and, for perennial species, low growth-season temperature. Our findings reveal that GS is a globally important predictor of grass performance dependent on environmental conditions. The benefits for species with larger GS are likely due to associated larger cell sizes, allowing rapid biomass production where soil fertility meets N demands and/or when growth occurs via temperature-independent cell expansion.

11.
Cell Rep ; 43(10): 114836, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368088

RESUMEN

Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 C. elegans recombinant inbred advanced intercross lines (RIAILs). We assessed molecular profiles-transcriptome, proteome, and lipidome-and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which correlated positively with developmental time. We validated three longevity modulators, including rict-1, gfm-1, and mltn-1, among the top candidates obtained from multiomics data integration and quantitative trait locus (QTL) mapping. We translated their relevance to humans using UK Biobank data and showed that variants in GFM1 are associated with an elevated risk of age-related heart failure. We organized our dataset as a resource that allows interactive explorations for new longevity targets.

12.
J Fish Biol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370924

RESUMEN

Since the 1980s, the European eel (Anguilla anguilla) has declined by over 90% in recruitment across its European and North African distribution area. This diadromous fish spawns at sea and migrates into continental waters, where it grows for three to more than 30 years, depending on habitat conditions and location. During their growth, different habitat use tactics can locally influence the life-history traits of eels, including their survival rates. Thus, the spatio-temporal dimension of this species is crucial for management. Based on a rare Mediterranean long-term survey of more than 20 years (2001-2022) in an artificial drainage canal connected to a vast brackish lagoon (the Vaccarès lagoon), we aimed to study the dynamics of one subpopulation's life-history traits. We used Bayesian multistate capture-mark-recapture (CMR) models to assess the temporal variability in survival and abundance at both seasonal and inter-annual scales, considering life-stage structure. High survival rates and low detection probabilities were found for the undifferentiated and female yellow stages. In contrast, female silver eels exhibited lower survival rates and higher capture probabilities. Estimating detection probabilities and survival rates enabled accurate assessment of relative abundance across different life stages and time periods. Our findings indicated a substantial decrease in the abundance of undifferentiated and female yellow eels in the early 2000s, whereas the abundance of female silver eels remained consistently low yet stable throughout the study period. Considering the life stage seemed essential to study the dynamics of the eel during its continental growing period. The present results will provide key elements to propose and implement suitable sustainable environmental management strategies for eel conservation.

13.
J Hazard Mater ; 480: 136067, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39388863

RESUMEN

Microplastics are pervasive throughout aquatic ecological communities. While their negative impacts on the life history traits of aquatic species are well studied, the effects on community dynamics remain elusive. Consequently, community-level assessments of microplastic effects on marine food webs are largely lacking, creating significant knowledge gaps regarding marine ecosystem structure and dynamics in the context of microplastic contamination. Here we expand a multispecies size-spectrum model by incorporating microplastic impacts on individual life-history traits, ultimately allowing us to study microplastic-mediated structural and functional changes in fish communities. As expected, microplastic ingestion may drive species extinction, but the microplastic-to-food ratio threshold for extinction is species-specific, and not necessarily correlated with species' asymptotic weights. Interestingly, species responses to microplastics also propagate through the community as ingestion triggers both bottom-up and top-down effects on community dynamics. Which specific type of cascading effect is dominating depends on which species is ingesting microplastics as well as its trophic role in the community. Generally, low-trophic-level species ingesting microplastics can exert large detrimental effects on community biomass. Thus, this study highlights the necessity for a comprehensive risk assessment of species-specific responses to microplastic contamination as well as an understanding of individual species' role in their communities.

14.
Evol Psychol ; 22(4): 14747049241274622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39392171

RESUMEN

In this article, we examine the relations between extreme environmental harshness during childhood and personal fertility ideals in African students. The study is informed by biological models of predictive adaptive responses (PAR) for individual reproductive schedules in the context of life history theory (LHT). Following theoretical models of external and internal environmental cues, we tested whether war and starvation during childhood differentially predict African students' personal fertility ideals in terms of their desired number of children and their desired age of first parenthood. The data were collected in eight different countries from sub-Saharan Africa with an overall sample size of N = 392. Standardized effect estimates were obtained using a Bayesian approach. The results suggest that war and starvation are predictive of the desired number of children, but not of the desired age of first parenthood. Moreover, the effect estimates varied considerably between females and males, indicating possible interactions between the two independent variables depending on the students' sex. Furthermore, we found a small negative correlation between the desired number of children and the desired age of first parenthood, providing only weak support for a clustering of the two variables on a slow-fast continuum. The results are discussed in light of current models of individual life histories in humans.


Asunto(s)
Fertilidad , Inanición , Humanos , África del Sur del Sahara , Femenino , Masculino , Adulto , Adulto Joven , Fertilidad/fisiología , Guerra , Adolescente , Rasgos de la Historia de Vida , Estudiantes/psicología , Teorema de Bayes
15.
J Anim Ecol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221784

RESUMEN

Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.

16.
J Anim Ecol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225034

RESUMEN

Squamate reptiles are central for studying phenotypic correlates of evolutionary transitions from oviparity to viviparity because these transitions are numerous, with many of them being recent. Several models of life-history theory predict that viviparity is associated with increased female size, and thus more female-biased sexual size dimorphism (SSD). Yet, the corresponding empirical evidence is overall weak and inconsistent. The lizard Zootoca vivipara, which occupies a major part of Northern Eurasia and includes four viviparous and two non-sister oviparous lineages, represents an excellent model for testing these predictions. We analysed how sex-specific body size and SSD is associated with parity mode, using body length data for nearly 14,000 adult individuals from 97 geographically distinct populations, which cover almost the entire species' range and represent all six lineages. Our analyses controlled for lineage identity, climatic seasonality (the strongest predictor of geographic body size variation in previous studies of this species) and several aspects of data heterogeneity. Parity mode, lineage and seasonality are significantly associated with female size and SSD; the first two predictors accounted for 14%-26% of the total variation each, while seasonality explained 5%-7%. Viviparous populations exhibited a larger female size than oviparous populations, with no concomitant differences in male size. The variation of male size was overall low and poorly explained by our predictors. Albeit fully expected from theory, the strong female bias of the body size differences between oviparous and viviparous populations found in Z. vivipara is not evident from available data on three other lizard systems of closely related lineages differing in parity mode. We confront this pattern with the data on female reproductive traits in the considered systems and the frequencies of evolutionary changes of parity mode in the corresponding lizard families and speculate why the life-history correlates of live-bearing in Z. vivipara are distinct. Comparing conspecific populations, our study provides the most direct evidence for the predicted effect of parity mode on adult body size but also demonstrates that the revealed pattern may not be general. This might explain why across squamates, viviparity is only weakly associated with larger size.

17.
BMC Public Health ; 24(1): 2479, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261799

RESUMEN

BACKGROUND: Human reproductive dynamics in the post-industrial world are typically explained by economic, technological, and social factors including the prevalence of contraception and increasing numbers of women in higher education and the workforce. These factors have been targeted by multiple world governments as part of family policies, yet those policies have had limited success. The current work adopts a life history perspective from evolutionary biology: like most species, human populations may respond to safer environments marked by lower morbidity and mortality by slowing their reproduction and reducing their number of offspring. We test this association on three levels of analysis using global, local, and individual data from publicly available databases. RESULTS: Data from over 200 world nations, 3,000 U.S. counties and 2,800 individuals confirm an association between human reproductive outcomes and local mortality risk. Lower local mortality risk predicts "slower" reproduction in humans (lower adolescent fertility, lower total fertility rates, later age of childbearing) on all levels of analyses, even while controlling for socioeconomic variables (female employment, education, contraception). CONCLUSIONS: The association between extrinsic mortality risk and reproductive outcomes, suggested by life history theory and previously supported by both animal and human data, is now supported by novel evidence in humans. Social and health policies governing human reproduction, whether they seek to boost or constrain fertility, may benefit from incorporating a focus on mortality risk.


Asunto(s)
Mortalidad , Reproducción , Humanos , Femenino , Mortalidad/tendencias , Adulto , Adolescente , Masculino , Salud Global/estadística & datos numéricos , Adulto Joven , Persona de Mediana Edad , Factores Socioeconómicos , Estados Unidos/epidemiología , Tasa de Natalidad/tendencias , Factores de Riesgo
18.
Heliyon ; 10(17): e36671, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263086

RESUMEN

In a world grappling with climate change, understanding the enduring impact of changes in temperatures on insect adult traits is crucial. It is proposed that cold- and warm-adapted species exhibit specialized behavioural and physiological responses to their respective temperature ranges. In contrast, generalist species maintain more stable metabolic and developmental rates across a broader range of temperatures, reflecting their ability to exploit diverse thermal niches. Here, we explored this intricate response to temperature exposure in three Drosophila species: Drosophila ezoana originating in Arctic regions, D. novamexicana in arid, hot environments, and in the cosmopolitan species D. virilis. Rearing these flies at 15, 20, 25, and 30 °C revealed striking variations in their cuticular hydrocarbon (CHC) profiles, known to mediate mate recognition and prevent water loss in insects. The cold-adapted D. ezoana consistently exhibited reduced CHC levels with increasing temperatures, while the warm-adapted D. novamexicana and the cosmopolitan D. virilis displayed more nuanced responses. Additionally, we observed a significant influence of rearing temperature on the mating behaviour of these flies, where those reared at the extreme temperatures, 15 and 30 °C, exhibiting reduced mating success. Consequently, this led to a decrease in the production of adult offspring. Also, these adult offspring underwent notable alterations in life history traits, reaching adulthood more rapidly at 25 and 30 °C but with lower weight and reduced longevity. Furthermore, among these offspring, those produced by the cold-adapted D. ezoana were more vulnerable to desiccation and starvation than those from the warm-adapted D. novamexicana and the cosmopolitan D. virilis. In summary, our research demonstrates that Drosophila species from diverse ecological regions exhibit distinct responses to temperature changes, as evidenced by variations in CHC profiles, mating behaviours, fertility, and life history traits. This provides valuable insights into how environmental conditions shape the biology and ecology of insects.

19.
Sci Rep ; 14(1): 21456, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271717

RESUMEN

Environmental variability can significantly impact individual survival and reproduction. Meanwhile, high population densities can lead to resource scarcity and increased exposure to parasites and pathogens. Studies with insects can offer valuable insights into eco-immunology, allowing us to explore the connections between these variables. Here we use the moth Anticarsia gemmatalis to examine how increases in population density and immunological challenge during the larval stage shape its investment in immune defence and reproduction. Larvae reared at a high population density exhibited greater lytic activity against bacteria compared to those reared at low density, whilst bacterial challenge (i.e. bacteria-immersed needles) also increased lytic activity. There was no interaction between the variables population density and bacterial challenge, indicating that these are independent. Surprisingly, neither increase in lytic activity carried through to activity in prepupal haemolymph. Rearing of larvae at a high density delayed pupation and decreased pupal weight. The immunological stimulus did not significantly influence pupal development. Lower population density as a larva resulted in greater adult weight, but did not significantly influence lytic activity in the eggs or the number of eggs laid. Negative correlations were found between lytic activity in the eggs and the number of eggs, as well as between adult weight and the number of eggs. Overall, this study demonstrates that high population density and immune challenge trigger increased lytic activity in caterpillars, but this effect is transient, not persisting into later stages. The trade-offs observed, such as delayed pupation and reduced prepupal weights under high density, suggest a balancing act between immune investment and developmental aspects. The findings hint at a short-term adaptive response rather than a sustained strategy. The implications of delayed pupation and smaller adult moths could influence the moth's life history strategy, impacting its role in the ecosystem. Further research tracking larval immune investment and subsequent reproductive success will unveil the evolutionary dynamics of this relationship in changing environments.


Asunto(s)
Larva , Mariposas Nocturnas , Animales , Larva/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/crecimiento & desarrollo , Pupa/inmunología , Pupa/crecimiento & desarrollo , Reproducción , Hemolinfa/inmunología , Estadios del Ciclo de Vida/inmunología , Densidad de Población
20.
J Invertebr Pathol ; 207: 108187, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243881

RESUMEN

Most of eukaryotic organisms live in close interaction with micro-organisms called symbionts. Symbiotic interactions underpin the evolution of biological complexity, the health of organisms and, ultimately, the proper functioning of ecosystems. While some symbionts confer adaptive benefits on their host (mutualistic symbionts) and others clearly induce costs (parasitic symbionts), a number of micro-organisms are difficult to classify because they have been described as conferring both benefits and costs on their host. This is particularly true of the most widespread animal endosymbiont, Wolbachia pipientis. In this study, we investigated the influence of Wolbachia infection on a broad spectrum of ecological and physiological parameters of one of its native hosts, Armadillidium vulgare. The aim was to gain as complete a picture as possible of the influence of this endosymbiont on its host. Our results showed that the presence of Wolbachia resulted in a decrease in individual reproductive success and survival. Host immune cells density decreased and ß-galactosidase activity (ageing biomarker) increased with the presence of Wolbachia, suggesting a negative impact of this endosymbiont on woodlice health. While previous studies have shown that Wolbachia can have a positive impact on the immunocompetence of A. vulgare, here we shed more light on the costs of infection. Our results illustrate the complex dynamics that exist between Wolbachia and its arthropod host and therefore offer valuable insights into the intricate interplay of symbiotic relationships in ecological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA