Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Radiat Oncol ; 19(1): 128, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334323

RESUMEN

BACKGROUND: The stiffness of the tumor microenvironment (TME) directly influences cellular behaviors. Radiotherapy (RT) is a common treatment for solid tumors, but the TME can impact its efficacy. In the case of liver cancer, clinical observations have shown that tumors within a cirrhotic, stiffer background respond less to RT, suggesting that the extracellular matrix (ECM) stiffness plays a critical role in the development of radioresistance. METHODS: This study explored the effects of ECM stiffness and the inhibition of lysyl oxidase (LOX) isoenzymes on the radiation response of liver cancer in a millimeter-sized three-dimensional (3D) culture. We constructed a cube-shaped ECM-based millimeter-sized hydrogel containing Huh7 human liver cancer cells. By modulating the collagen concentration, we produced two groups of samples with different ECM stiffnesses to mimic the clinical scenarios of normal and cirrhotic livers. We used a single-transducer system for shear-wave-based elasticity measurement, to derive Young's modulus of the 3D cell culture to investigate how the ECM stiffness affects radiosensitivity. This is the first demonstration of a workflow for assessing radiation-induced response in a millimeter-sized 3D culture. RESULTS: Increased ECM stiffness was associated with a decreased radiation response. Moreover, sonoporation-assisted LOX inhibition with BAPN (ß-aminopropionitrile monofumarate) significantly decreased the initial ECM stiffness and increased RT-induced cell death. Inhibition of LOX was particularly effective in reducing ECM stiffness in stiffer matrices. Combining LOX inhibition with RT markedly increased radiation-induced DNA damage in cirrhotic liver cancer cells, enhancing their response to radiation. Furthermore, LOX inhibition can be combined with sonoporation to overcome stiffness-related radioresistance, potentially leading to better treatment outcomes for patients with liver cancer. CONCLUSIONS: The findings underscore the significant influence of ECM stiffness on liver cancer's response to radiation. Sonoporation-aided LOX inhibition emerges as a promising strategy to mitigate stiffness-related resistance, offering potential improvements in liver cancer treatment outcomes.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Matriz Extracelular , Neoplasias Hepáticas , Proteína-Lisina 6-Oxidasa , Microambiente Tumoral , Humanos , Matriz Extracelular/efectos de la radiación , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patología , Proteína-Lisina 6-Oxidasa/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Microambiente Tumoral/efectos de la radiación , Tolerancia a Radiación , Elasticidad/efectos de la radiación , Línea Celular Tumoral , Hidrogeles , Células Tumorales Cultivadas , Módulo de Elasticidad
2.
Adv Exp Med Biol ; 1460: 697-726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287870

RESUMEN

Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.


Asunto(s)
Cirugía Bariátrica , Obesidad , Pérdida de Peso , Humanos , Cirugía Bariátrica/métodos , Obesidad/cirugía , Obesidad/metabolismo , Obesidad/fisiopatología , Calidad de Vida , Resultado del Tratamiento , Gastrectomía/métodos , Laparoscopía/métodos
3.
Atherosclerosis ; 397: 118582, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260002

RESUMEN

BACKGROUND AND AIMS: Lysyl oxidase (LOX) catalyzes the crosslinking of collagen and elastin to maintain tensile strength and structural integrity of the vasculature. Excessive LOX activity increases vascular stiffness and the severity of occlusive diseases. Herein, we investigated the mechanisms by which LOX controls atherogenesis and osteogenic differentiation of vascular smooth muscle cells (SMC) in hyperlipidemic mice. METHODS: Gene inactivation of Lox in SMC was achieved in conditional knockout mice after tamoxifen injections. Atherosclerosis burden and vascular calcification were assessed in hyperlipidemic conditional [Loxf/fMyh11-CreERT2ApoE-/-] and sibling control mice [Loxwt/wtMyh11-CreERT2ApoE-/-]. Mechanistic studies were performed with primary aortic SMC from Lox mutant and wild type mice. RESULTS: Inactivation of Lox in SMCs decreased > 70 % its RNA expression and protein level in the aortic wall and significantly reduced LOX activity without compromising vascular structure and function. Moreover, LOX deficiency protected mice against atherosclerotic burden (13 ± 2 versus 23 ± 1 %, p < 0.01) and plaque calcification (5 ± 0.4 versus 11.8 ± 3 %, p < 0.05) compared to sibling controls. Interestingly, gene inactivation of Lox in SMCs preserved the contractile phenotype of vascular SMC under hyperlipidemic conditions as demonstrated by single-cell RNA sequencing and immunofluorescence. Mechanistically, the absence of LOX in SMC prevented excessive collagen crosslinking and the subsequent activation of the pro-osteogenic FAK/ß-catenin signaling axis. CONCLUSIONS: Lox inactivation in SMC protects mice against atherosclerosis and plaque calcification by reducing SMC modulation and FAK/ß-catenin signaling.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemias , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica , Proteína-Lisina 6-Oxidasa , Calcificación Vascular , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/genética , Aterosclerosis/enzimología , Aterosclerosis/patología , Aterosclerosis/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Calcificación Vascular/enzimología , Calcificación Vascular/prevención & control , Calcificación Vascular/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/enzimología , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Ratones , Osteogénesis , Células Cultivadas , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/metabolismo , Aorta/patología , Aorta/enzimología , Aorta/metabolismo , Masculino , Ratones Endogámicos C57BL , beta Catenina/metabolismo , Transducción de Señal , Proteínas de la Matriz Extracelular
4.
J Cancer ; 15(16): 5230-5243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247609

RESUMEN

The lysyl oxidase (LOX) family proteins are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like 1-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumours, whereby a corrupt tumour microenvironment (TME) takes shape. Additionally, dysregulation and aberrant expression of LOX family proteins have been implicated in the occurrence and progression of various types of human cancers, including lung cancer, hepatocellular carcinoma, gastric cancer, renal cell carcinoma, and colorectal cancer. Breast cancer is the most prevalent malignant tumour in women worldwide, and its incidence rate is increasing annually. In recent years, a growing body of evidence has revealed significant upregulation of LOX family proteins in breast cancer, which contributes to cancer cell proliferation, invasion, and metastasis. Furthermore, elevated expression of LOX family proteins is closely associated with poor prognosis in breast cancer patients. We herein review the structure, regulation, function, and mechanisms of LOX family proteins in the occurrence and progression of breast cancer. In addition, we highlight recent insights into their mechanisms and their potential involvement in the clinical value and novel biological roles of LOX family members in tumour progression and the TME of breast cancer. This review will provide a theoretical basis and reference for clinical diagnosis and treatment of breast cancer, as well as for the screening of effective LOX-specific inhibitors.

5.
Biochem Biophys Res Commun ; 738: 150497, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39151293

RESUMEN

Fibrosis results in one-third of all deaths globally and is a major healthcare challenge. Fibrosis is scarring caused by the excess deposition of extracellular matrix proteins by fibroblasts. Inhibition of pathways downstream of transforming growth factor ß (TGF-ß) a pluripotent growth factor, has potent antifibrotic effects in different organs. Here we show that loss of bone morphogenetic protein (BMP-3) is a feature of kidney fibrosis, independent of the initiating injury, suggesting loss of this cytokine is a core fibrotic mechanism. TGF-ß decreased BMP3 expression in human fibroblasts is possibly a feed-forward loop that contributes to increased and sustained TGF-ß activity. Recombinant human BMP-3 reduced TGF-ß induced fibroblast contraction, migration and invasion, pathways that lead to scarring and tissue stiffening. BMP-3 reduced TGF-ß stimulated collagen cross-linking, and Ox-LDL receptor 1, a regulator of collagen deposition. BMP-3 inhibited TGF-ß stimulated lysyl oxidase activity. Lysyl oxidase mediated collagen cross-linking is a critical process in TGF-ß induced fibrosis. We propose that BMP-3 alters fibroblast responses to TGF-ß, shifting the balance from fibrosis to repair. Recombinant human BMP-3 shows promise for development as a novel therapeutic for fibrosis.

6.
Exp Biol Med (Maywood) ; 249: 10090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143955

RESUMEN

The intima, comprising the endothelium and the subendothelial matrix, plays a crucial role in atherosclerosis pathogenesis. The mechanical stress arising from disturbed blood flow (d-flow) and the stiffening of the arterial wall contributes to endothelial dysfunction. However, the specific impacts of these physical forces on the mechanical environment of the intima remain undetermined. Here, we investigated whether inhibiting collagen crosslinking could ameliorate the detrimental effects of persistent d-flow on the mechanical properties of the intima. Partial ligation of the left carotid artery (LCA) was performed in C57BL/6J mice, inducing d-flow. The right carotid artery (RCA) served as an internal control. Carotids were collected 2 days and 2 weeks after surgery to study acute and chronic effects of d-flow on the mechanical phenotype of the intima. The chronic effects of d-flow were decoupled from the ensuing arterial wall stiffening by administration of ß-aminopropionitrile (BAPN), an inhibitor of collagen crosslinking by lysyl oxidase (LOX) enzymes. Atomic force microscopy (AFM) was used to determine stiffness of the endothelium and the denuded subendothelial matrix in en face carotid preparations. The stiffness of human aortic endothelial cells (HAEC) cultured on soft and stiff hydrogels was also determined. Acute exposure to d-flow caused a slight decrease in endothelial stiffness in male mice but had no effect on the stiffness of the subendothelial matrix in either sex. Regardless of sex, the intact endothelium was softer than the subendothelial matrix. In contrast, exposure to chronic d-flow led to a substantial increase in the endothelial and subendothelial stiffness in both sexes. The effects of chronic d-flow were largely prevented by concurrent BAPN administration. In addition, HAEC displayed reduced stiffness when cultured on soft vs. stiff hydrogels. We conclude that chronic d-flow results in marked stiffening of the arterial intima, which can be effectively prevented by inhibition of collagen crosslinking.


Asunto(s)
Arterias Carótidas , Ratones Endogámicos C57BL , Rigidez Vascular , Animales , Masculino , Rigidez Vascular/efectos de los fármacos , Ratones , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Femenino , Túnica Íntima/patología , Túnica Íntima/efectos de los fármacos , Colágeno/metabolismo , Aminopropionitrilo/farmacología , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Microscopía de Fuerza Atómica , Humanos , Estrés Mecánico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo
7.
Bioact Mater ; 41: 257-270, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39149595

RESUMEN

Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO2 NPs). LOX facilitates extracellular matrix (ECM) cross-linking, while MnO2 NPs inhibit excessive reactive oxygen species (ROS)-induced ECM degradation at the injury site, enhancing the crosslinking effect of LOX. Our results revealed that this multifunctional scaffold significantly facilitated the integration between the scaffold and AF tissue. Cells were able to migrate into the scaffold, indicating that the scaffold was not encapsulated as a foreign body by fibrous tissue. The functional scaffold was closely integrated with the tissue, effectively enhancing the mechanical properties, and preventing vascular invasion, which emphasized the importance of scaffold-tissue integration in AF repair.

8.
Transl Cancer Res ; 13(6): 3142-3155, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988912

RESUMEN

Background and Objective: Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods: English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings: This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions: LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.

9.
Cell Chem Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39043186

RESUMEN

Lysyl oxidase (LOX) is upregulated in highly stiff aggressive tumors, correlating with metastasis, resistance, and worse survival; however, there are currently no potent, safe, and orally bioavailable small molecule LOX inhibitors to treat these aggressive desmoplastic solid tumors in clinics. Here we discovered bi-thiazole derivatives as potent LOX inhibitors by robust screening of drug-like molecules combined with cell/recombinant protein-based assays. Structure-activity relationship analysis identified a potent lead compound (LXG6403) with ∼3.5-fold specificity for LOX compared to LOXL2 while not inhibiting LOXL1 with a competitive, time- and concentration-dependent irreversible mode of inhibition. LXG6403 shows favorable pharmacokinetic properties, globally changes ECM/collagen architecture, and reduces tumor stiffness. This leads to better drug penetration, inhibits FAK signaling, and induces ROS/DNA damage, G1 arrest, and apoptosis in chemoresistant triple-negative breast cancer (TNBC) cell lines, PDX organoids, and in vivo. Overall, our potent and tolerable bi-thiazole LOX inhibitor enhances chemoresponse in TNBC, the deadliest breast cancer subtype.

10.
Curr Eye Res ; : 1-9, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979820

RESUMEN

PURPOSE: To investigate the effect of reducing Lysyl oxidase (LOX) overexpression on retinal ganglion cells (RGCs) apoptosis in an acute ocular hypertension (AOH) rat model. METHODS: AOH rat model was performed by anterior chamber perfusion and either received an intravitreal injection with ß-aminopropionitrile (BAPN) or normal saline. After 2wk, Quantification of survival RGCs in the retina was performed using Retrograde FluoroGold labeling. The mRNA expression levels of LOX, LOXL1-4, collagen 1a1 (Col1a1), collagen 3a1 (Col3a1), collagen4a1 (Col4a1), elastin (Eln), fibronectin1 (Fbn1), fibronectin4 (Fbn4) were determined by RT-qPCR. LOX expression was determined by Western blot (WB) analysis and immunohistochemistry. The RNA expression of LOX, Eln and Col1a1 in RGCs retrograde-labeled with 1,1'-dioctadecyl-3,3,3',3' tetra-methylindocarbocyanine perchlorate(DiI)that selected through FACS sorting were determined by RT-qPCR analysis. Changes of the retinal function were detected by Electroretinogram (ERG) analysis. RESULTS: Results showed that significant LOX overexpression and loss of RGCs related to IOP exposure in AOH retinas. PCR analysis indicated significant increased mRNA level of Col1a1, Col3al and Eln in AOH retinas. Significant increase mRNA expression of LOX, Col1a1 and Eln in the RGCs were observed in AOH group compared with CON group. AOH rats injected with BAPN showed a significant decrease in LOX expression, reduced the loss of RGCs and retinal function damage. CONCLUSIONS: The results demonstrated that changes of LOX and specific ECM components in retina were correlated with AOH. Findings from this study indicated that preventing LOX over-expression may be protective against RGCs loss and retinal function damage in AOH animal model.

11.
Matrix Biol ; 132: 34-46, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38925225

RESUMEN

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.


Asunto(s)
Fibroblastos , Canales Iónicos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Fibroblastos/metabolismo , Animales , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Regulación de la Expresión Génica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/citología , Miocardio/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Mitocondrias/metabolismo , Mitocondrias/genética , Células Cultivadas
12.
Matrix Biol ; 132: 24-33, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852924

RESUMEN

Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.


Asunto(s)
Proteína Morfogenética Ósea 1 , Factor II del Crecimiento Similar a la Insulina , Proteína-Lisina 6-Oxidasa , Fibrosis Pulmonar , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Humanos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Proteína Morfogenética Ósea 1/metabolismo , Proteína Morfogenética Ósea 1/genética , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Matriz Extracelular/metabolismo , Pulmón/metabolismo , Pulmón/patología , Bleomicina/farmacología , Modelos Animales de Enfermedad , Femenino , Masculino
13.
Fitoterapia ; 177: 106091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908760

RESUMEN

Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 µM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.


Asunto(s)
Dioxolanos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Óxido Nítrico , Proteína-Lisina 6-Oxidasa , Neoplasias de la Mama Triple Negativas , Proteína-Lisina 6-Oxidasa/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Dioxolanos/farmacología , Dioxolanos/química , Línea Celular Tumoral , Óxido Nítrico/metabolismo , Estructura Molecular , Donantes de Óxido Nítrico/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Profármacos/farmacología , Profármacos/química , Piperidonas
14.
Front Oncol ; 14: 1371307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863623

RESUMEN

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-ß1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-ß1 hastens the invasive outgrowth of TNBC cells at the molecular level. Methods: LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively. Results: Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-κB (NF-κB). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-ß activated kinase 1 (TAK1) were required for the activation of NF-κB through Iκß kinase kinase (IKKα/ß) phosphorylation. Conclusion: Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-ß1-TRAF4-TAK1-IKKα/ß-Iκßα-NF-κB-MMP9, is crucial for TNBC cell invasiveness.

15.
Pathobiology ; : 1-12, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934185

RESUMEN

INTRODUCTION: Lysyl oxidase-like 2 (LOXL2) expression and function is frequently altered in different cancers but scarcely explored in oral squamous cell carcinoma (OSCC). This prompted us to investigate the clinical relevance of LOXL2 expression pattern in OSCC and also a possible crosstalk with Hippo/YAP1 pathway signaling. METHODS: Immunohistochemical analysis of LOXL2 protein expression was performed in 158 OSCC patient samples, together with Yes-associated protein 1 (YAP1) activation status. Correlations with clinicopathological parameters and patient survival were assessed. RESULTS: Tumor cell-intrinsic LOXL2 expression showed two distinct expression patterns: diffuse cytoplasmic staining (64.6%) and heterogeneous perinuclear staining (35.4%). Remarkably, perinuclear LOXL2 staining was significantly associated with lymph node metastasis, advanced clinical stage and perineural invasion. Moreover, patients harboring tumors with perinuclear LOXL2 expression exhibited significantly poorer disease-specific survival (DSS) rates, and perinuclear LOXL2 positivity gradually increased in relation to YAP1 activation. Patients harboring tumors with concomitant perinuclear LOXL2 and fully active YAP1 exhibited the worst DSS. Multivariate Cox analysis further revealed combined perinuclear LOXL2 and fully active YAP1 as a significant independent predictor of poor DSS. CONCLUSION: Tumor-intrinsic perinuclear LOXL2 emerges as a clinically and biologically relevant feature associated with advanced disease, tumor aggressiveness, and poor prognosis in OSCC. Moreover, this study unprecedentedly uncovers a functional relationship between perinuclear LOXL2 and YAP1 activation with major prognostic implications. Notably, combined perinuclear LOXL2 and fully active YAP1 was revealed as independent predictor of poor prognosis. These findings encourage targeting oncogenic LOXL2 functions for personalized treatment regimens.

16.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822669

RESUMEN

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Asunto(s)
Moléculas de Adhesión Celular , Fibroblastos , Proteína-Lisina 6-Oxidasa , Ratas Sprague-Dawley , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Fibroblastos/metabolismo , Ratas , Moléculas de Adhesión Celular/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Miocardio/citología , Angiotensina II/farmacología , Angiotensina II/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Células Cultivadas , Modelos Animales de Enfermedad , Periostina
17.
Curr Med Chem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38939993

RESUMEN

The formation of fibrotic bands in female reproductive system, including the uterus, after abdominal and pelvic surgeries, is an important medical challenge associated with many complications, including infertility and pain. Investigating the role of different molecules involved in fibrosis and adhesion formation may help in the development of new drugs to prevent this disorder. Lysyl oxidase-like 2 (LoxL2) is a copper-dependent enzyme that catalyzes the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM) to stabilize ECM. Dysregulation of LoxL2 activity resulting from tissue hypoxia and inflammation after gynecological surgeries in the female reproductive tract increases collagen fibers cross-linking and promotes fibrosis. It has been shown that targeting LoxL2 by Lox inhibitors may reduce fibrosis. Considering the expression of LoxL2 in female reproductive organs and its dysregulation in hypoxia and inflammation, it is possible that LoxL2 has therapeutic potential as a drug target in the prevention of adhesions. In this review, we discuss the role of LoxL2 in the promotion of fibrotic processes focusing on its link with inflammatory and hypoxic conditions. We also justify the use of anti- LoxL2 agents as a potential therapeutic strategy for the prevention of post-surgical scar formation.

18.
Stem Cells Dev ; 33(13-14): 355-364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38770821

RESUMEN

Tendons are frequently injured and have limited regenerative capacity. This motivates tissue engineering efforts aimed at restoring tendon function through strategies to direct functional tendon formation. Generation of a crosslinked collagen matrix is paramount to forming mechanically functional tendon. However, it is unknown how lysyl oxidase (LOX), the primary mediator of enzymatic collagen crosslinking, is regulated by stem cells. This study investigates how multiple factors previously identified to promote tendon formation and healing (transforming growth factor [TGF]ß1 and TGFß2, mechanical stimuli, and hypoxia-inducible factor [HIF]-1α) regulate LOX production in the murine C3H10T1/2 mesenchymal stem cell (MSC) line. We hypothesized that TGFß signaling promotes LOX activity in C3H10T1/2 MSCs, which is regulated by both mechanical stimuli and HIF-1α activation. TGFß1 and TGFß2 increased LOX levels as a function of concentration and time. Inhibiting the TGFß type I receptor (TGFßRI) decreased TGFß2-induced LOX production by C3H10T1/2 MSCs. Low (5 mPa) and high (150 mPa) magnitudes of fluid shear stress were applied to test impacts of mechanical stimuli, but without TGFß2, loading alone did not alter LOX levels. Low loading (5 mPa) with TGFß2 increased LOX at 7 days greater than TGFß2 treatment alone. Neither HIF-1α knockdown (siRNA) nor activation (CoCl2) affected LOX levels. Ultimately, results suggest that TGFß2 and appropriate loading magnitudes contribute to LOX production by C3H10T1/2 MSCs. Potential application of these findings includes treatment with TGFß2 and appropriate mechanical stimuli to modulate LOX production by stem cells to ultimately control collagen matrix stiffening and support functional tendon formation.


Asunto(s)
Células Madre Mesenquimatosas , Proteína-Lisina 6-Oxidasa , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta2 , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Línea Celular , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Estrés Mecánico , Proteínas de la Matriz Extracelular
19.
Transl Cancer Res ; 13(4): 1997-2011, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737681

RESUMEN

Background and Objective: Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides that are widely involved in various physiological and pathobiological processes in the body. LncRNA plays a crucial role in tumorigenesis and development with its unique functions, such as playing a role in a variety of biological processes of malignant tumors as a cancer-promoting factor or a cancer-suppressor factor. Lysyl oxidase-like protein 1-antisense RNA1 (LOXL1-AS1) is a novel functional lncRNA recently reported. This article reviews the current findings on the role of LOXL1-AS1 in cancer, and discusses the potential clinical significance and application prospects, in order to provide a theoretical basis and reference for the clinical diagnosis, treatment and screening of prognostic markers for malignant tumors. Methods: The PubMed and Embase databases were searched using the keywords "cancer" or "tumor" or "neoplasm" and "LOXL1-AS1" for publications from 2018 to the present. The English literature was searched, with a focus on relevant articles. These articles validated the role and mechanism of LOXL1-AS1 in different cancers. Key Content and Findings: LOXL1-AS1 is a recently reported novel lncRNA, which is abnormally expressed and upregulated in more than ten cancers, and is positively correlated with adverse clinical features and poor prognosis in cancer patients. LOXL1-AS1 competently binds to a variety of microRNAs to regulate the expression of downstream target genes and regulate related signaling pathways, including proliferation, migration, invasion and inhibition of malignant biological behaviors such as apoptosis. Conclusions: LOXL1-AS1 is expected to become a novel biomarker for cancer diagnosis and treatment, with great potential as an independent prognostic indicator.

20.
Transl Cancer Res ; 13(4): 2026-2042, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737700

RESUMEN

Background and Objective: Lysyl oxidase-like protein 4 (LOXL4) is a secreted copper-dependent amine oxidase involved in the assembly and maintenance of extracellular matrix (ECM), playing a critical role in ECM formation and repair. Tumor-stroma interactions and ECM dysregulation are closely associated with the mechanisms underlying tumor initiation and progression. LOXL4 is the latest identified member of the lysyl oxidase (LOX) protein family. Currently, there is limited and controversial research on the role of LOXL4 in human malignancies. Its specific regulatory pathways, mechanisms, and roles in the occurrence, development, and treatment of malignancies remain incompletely understood. This article aims to illustrate the primary protein structure and the function of LOXL4 protein, and the relationship between LOXL4 protein and the occurrence and development of human malignant tumors to provide a reference for further clinical research. Methods: We searched the English literature on LOXL4 in the occurrence and development of various malignant tumors in PubMed and Web of Science. The search keywords include "cancer" "LOXL4" "malignant tumor" "tumorigenesis and development", etc. Key Content and Findings: LOXL4 is up-regulated in human gastric cancer, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, esophageal carcinoma and colorectal cancer, but down-regulated in human bladder cancer and lung cancer and inhibits tumor growth. There are two conflicting reports of both upregulation and downregulation in hepatocellular carcinoma, suggesting that LOXL4 has a bidirectional effect of promoting or inhibiting cancer in different types of human malignant tumors. We further explore the application prospect of LOXL4 protein in the study of malignant tumors, laying a theoretical foundation for the clinical diagnosis, treatment and screening of prognostic markers of malignant tumors. Conclusions: LOXL4 exerts a bidirectional regulatory role, either inhibiting or promoting tumors depending on the type of cancer. We still need more research to further confirm the molecular mechanism of LOXL4 in cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA