Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.303
Filtrar
1.
Int J Biol Macromol ; 275(Pt 2): 133581, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960262

RESUMEN

Secretory immunoglobulin A [sIgA] is a promising candidate for enteric therapeutics applications, and several sIgA-based constructs are currently being developed by groups utilizing clarified Chinese hamster ovary [CHO] cell culture supernatants. To the monoclonal antibody downstream processing typically entails chromatography-based purification processes beginning with Protein A chromatography. In this paper, aqueous two-phase systems [ATPS] were employed for the preliminary purification of secretory immunoglobulin A [sIgA] monoclonal antibody [mAb] from clarified CHO-cell culture supernatants. A 24 full factorial design was utilized. The influence of various process parameters such as pH, PEG molecular weight [MPEG], PEG concentration [CPEG], and phosphate salt concentration [CPHO], on the sIgA partition coefficient [K sIgA] and the recovery index [Y] in the PEG phase were evaluated. The Elisa assay revealed that, in the ATPS conditions tested, sIgA mAb was mostly detected in PEG upper phase. Run 14 with the highest sIgA activity exhibited the following conditions: MPEG 8.000 g/mol, CPEG 12,5 %, pH 7,0 and CPHO 10 %, and a sIgA K of 94.50 and a recovery index [Y] of 33.52 %. The proposed platform provides straightforward implementation, yields comparable results, and offers significantly improved economics for manufacturing sIgA mAb biotherapeutics.

2.
Biotechnol Prog ; : e3487, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980213

RESUMEN

WuXiUPTM, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUPTM and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUPTM and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUPTM process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.

3.
Sci Rep ; 14(1): 15030, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951592

RESUMEN

In this paper, the crystal geometry, electronic structure, lattice vibration, Infrared and Raman spectra of ternary layered borides M3AlB2 (M = Ti, Zr, Hf, Ta) are studied by using first principles calculation method based on the density functional theory. The electronic structure of M3AlB2 indicates that they are all electrical conductors, and the d orbitals of Ti, Zr, Hf, and Ta occupy most of the bottom of the conduction band and most of the top of the valence band. Al and B have lower contributions near their Fermi level. The lightweight and stronger chemical bonds of atom B are important factors that correspond to higher levels of peak positions in the Infrared and Raman spectra. However, the vibration frequencies, phonon density of states, and peak positions of Infrared and Raman spectra are significantly lower because of heavier masses and weaker chemical bonds for M and Al atoms. And, there are 6 Infrared active modes A2u and E1u, and 7 Raman active modes, namely A1g, E2g, and E1g corresponding to different vibration frequencies in M3AlB2. Furthermore, the Infrared and Raman spectra of M3AlB2 were obtained respectively, which intuitively provided a reliable Infrared and Raman vibration position and intensity theoretical basis for the experimental study.

4.
Contraception ; : 110536, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986862

RESUMEN

OBJECTIVES: To evaluate medication abortion (MAB) outcomes for participants receiving intramuscular depot medroxyprogesterone acetate (DMPA) injections or subdermal etonogestrel implants concurrently with mifepristone compared to those who did not in a real-world setting. STUDY DESIGN: This retrospective cohort study included MAB patients from one Planned Parenthood health center in St. Paul, MN, between 2017-2019. We abstracted electronic health records and compared sociodemographic variables, clinical information, and treatment failure rates (primary outcome) between study groups with logistic regression (generating odds ratios [OR] and 95% confidence intervals [CI]). RESULTS: Among 7296 MAB participants, 224 (3.1%) received DMPA injections and 309 (4.2%) received etonogestrel implants concurrently with mifepristone; 141 (62.9%) and 200 (64.7%) completed follow-up respectively. From a random sample of 1000, 990 comparison participants met inclusion criteria; 704 (71.1%) completed follow-up. Fourteen (9.9%) DMPA participants (aOR 4.26, 95% CI 1.87-9.68, p<0.001) and 6 (3.0%) etonogestrel implant participants (aOR 1.38, 95% CI 0.48-3.55, p=0.522) required additional treatment to empty the uterus and/or had an ongoing pregnancy, each contrasted with 15 (2.1%) comparison patients (models adjusted for gestational duration, patient age, parity, and race). CONCLUSION: Although our study is limited by high rates of loss to follow-up, our analysis suggests that concurrent administration of DMPA with mifepristone may decrease MAB efficacy, while etonogestrel implant placement does not appear to alter MAB outcomes. These findings are overall consistent with prior literature and inform post-MAB contraception counseling. IMPLICATIONS: This retrospective cohort study reinforces prior randomized controlled trial findings that concurrent depot medroxyprogesterone acetate injection with mifepristone administration may decrease medication abortion efficacy. Conversely, concurrent etonogestrel contraceptive implant placement with mifepristone administration does not appear to decrease medication abortion efficacy. These findings inform post-abortion contraception counseling.

5.
Biotechnol Bioeng ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822680

RESUMEN

Due to their proteinaceous structure, monoclonal antibodies (mAbs) are susceptible to irreversible aggregation, with harmful consequences on drug efficacy and patient safety. To mitigate this risk in modern biopharmaceutical processes, it is critical to comply with current good manufacturing practices (cGMP) and pursue operating strategies minimizing irreversible aggregation whilst also maximizing mAb throughput. These conflicting objectives are targeted in this study by formulating and analyzing an integrated dynamic model accounting for both cultivation and aggregation of mAbs from a Chinese Hamster Ovary (CHO) cell line. Two manipulated dynamic variables are considered here in simulation studies: firstly temperature manipulation within a batch reactor, and secondly feed flow manipulation within a series of isothermal fed-batch reactors. Following this, dynamic optimization investigations have been conducted, firstly with the single objective of maximizing mAb throughput and secondly with multiple (two) objectives of maximizing mAb throughput while also minimizing irreversible aggregate content, simultaneously. The study provides key insight into tradeoffs of how simultaneous temperature and feed flowrate manipulation affects mAb throughput and aggregation inside bioreactors.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38880058

RESUMEN

Protein A (ProA) high-performance liquid chromatography (HPLC) is a common analytical procedure for measuring monoclonal antibody (mAb) titers due to its high specificity and efficiency. Accurate and reliable results of this procedure are imperative, as the quantitation of the total mAb present for in-process samples directly impacts downstream purification steps related to the removal of process-related impurities. This study aimed to improve a platform ProA HPLC analytical procedure which was previously developed using traditional approaches and was not always reliable. By retrospectively applying Analytical Quality by Design (AQbD) principles and statistical assessments of performance, a bias in the calibration standard due to protein-adsorption to common sample vial materials was identified. The inclusion of Tween® 20 into the mobile phase used as sample diluent was optimized to ensure procedure performance and improve analytical range. The resulting procedure robustness was evaluated using Design of Experiment (DoE) approaches and performance was verified against Analytical Target Profile (ATP) criteria as recommended by regulatory agencies. The resulting linearity displayed R2 values of 1.00 with intercept biases of 1.2 % (analyst 1) and 0.8 % (analyst 2), accuracy across all levels was reported at 99.2 % recovery, and intermediate precision was reported as 3.0 % RSD. Application of this new platform procedure has since reduced development timelines for new mAb products by 50 % and allowed for accurate titer determination to support >5 early phase product-specific process decisions without requiring extensive analytical procedure development. This work demonstrates the utility and relative ease of adopting AQbD concepts, even for established procedures, and supporting them with a lifecycle approach to managing procedure performance.


Asunto(s)
Anticuerpos Monoclonales , Cromatografía de Afinidad , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Modelos Lineales , Animales , Proteína Estafilocócica A/química , Cricetulus , Límite de Detección , Células CHO
7.
J Clin Med ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930104

RESUMEN

Background: The introduction of biological drugs in the management of chronic rhinosinusitis with nasal polyps (CRSwNP) is allowing new and increasingly promising therapeutic options. This manuscript aims to provide a multicenter trial in a real-life setting on Mepolizumab treatment for severe uncontrolled CRSwNP with or without comorbid asthma. Methods: A retrospective data analysis was jointly conducted at the Otolaryngology-Head and Neck Surgery departments of La Sapienza University and San Camillo Forlanini Hospital in Rome. Both institutions participated by sharing clinical information on patients with CRSwNP treated with Mepolizumab. Patients were evaluated before starting Mepolizumab, at six months and at twelve months from the first drug administration. During follow-up visits, patients underwent endoscopic evaluation, quality of life assessment, nasal symptoms assessment, and blood tests to monitor mainly neutrophils, basophils, eosinophils, and IgG, IgA, and IgE assay. Results: Twenty patients affected by CRSwNP and treated with Mepolizumab were enrolled (12 females and 8 males with a mean age of 63.7 years). Sixteen patients (80%) had concomitant asthma. During follow-up, a gradual improvement in nasal polyp score, quality of life and nasal symptoms, assessed by SNOT-22 and VAS and loss of smell measured by olfactory VAS, was found. Regarding blood tests, eosinophils decreased gradually, while other blood parameters showed no statistically significant changes. Conclusions: Mepolizumab has been shown to be effective in the therapeutic management of patients with CRSwNP. Further studies are needed to support our findings and better understand the underlying immune pathways to predict patients' response to biological treatment in CRSwNP.

8.
Viruses ; 16(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932144

RESUMEN

Monitoring the genetic variability of human respiratory syncytial virus (hRSV) is of paramount importance, especially for the potential implication of key antigenic mutations on the emergence of immune escape variants. Thus, to describe the genetic diversity and evolutionary dynamics of hRSV circulating in Sicily (Italy), a total of 153 hRSV whole-genome sequences collected from 770 hRSV-positive subjects between 2017 and 2023, before the introduction of expanded immunization programs into the population, were investigated. The phylogenetic analyses indicated that the genotypes GA.2.3.5 (ON1) for hRSV-A and GB.5.0.5a (BA9) for hRSV-B co-circulated in our region. Amino acid (AA) substitutions in the surface and internal proteins were evaluated, including the F protein antigenic sites, as the major targets of immunoprophylactic monoclonal antibodies and vaccines. Overall, the proportion of AA changes ranged between 1.5% and 22.6% among hRSV-A, whereas hRSV-B varied in the range 0.8-16.9%; the latter was more polymorphic than hRSV-A within the key antigenic sites. No AA substitutions were found at site III of both subgroups. Although several non-synonymous mutations were found, none of the polymorphisms known to potentially affect the efficacy of current preventive measures were documented. These findings provide new insights into the global hRSV molecular epidemiology and highlight the importance of defining a baseline genomic picture to monitor for future changes that might be induced by the selective pressures of immunological preventive measures, which will soon become widely available.


Asunto(s)
Variación Genética , Genotipo , Filogenia , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Secuenciación Completa del Genoma , Humanos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Sicilia/epidemiología , Preescolar , Lactante , Femenino , Masculino , Niño , Adulto , Adolescente , Genoma Viral , Persona de Mediana Edad , Adulto Joven , Anciano , Gripe Humana/virología , Gripe Humana/epidemiología , Sustitución de Aminoácidos , Recién Nacido
9.
Vaccines (Basel) ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932349

RESUMEN

Canine atopic dermatitis (CAD) is an allergic, inflammatory, and pruritic skin disease associated with the production of IgE antibodies against environmental allergens and mainly house dust mite allergens. This complex dermatological pathology involves Interleukin 31 (IL-31) as a central itch mediator. One of the most effective CAD treatments is a caninized monoclonal antibody (mAb) called Lokivetmab. It is produced in CHO cells and targets specifically canine IL-31 (cIL-31) and blocks its cellular messaging. This treatment has undoubtedly contributed to a breakthrough in dermatitis-related pruritus. However, its production in mammalian cells requires time-consuming procedures, high production costs, and investment. Plants are considered an emerging protein production platform for recombinant biopharmaceuticals due to their cost-effectiveness and rapidity for production. Here, we use transient expression in Nicotiana benthamiana plants to produce recombinant canine Interleukin 31 (cIL-31) and an anti-IL-31 monoclonal antibody (M1). First, we describe the production and characterization of M1 and then its activity on an IL-31-induced pruritic model in dogs compared to its commercial homolog. Dogs treated with the plant-made M1 mAb have shown similar improvements to Lokivetmab-treated ones after different challenges using canine IL-31. Furthermore, M1 injections were not associated with any side effects. These results demonstrate the safety and efficacy of this plant-made Lokivetmab biosimilar to control dogs' pruritus in a well-established model. Finally, this study shows that the plant-production platform can be utilized to produce rapidly functional mAbs and bring hope to the immunotherapy field of veterinary medicine.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38914910

RESUMEN

A basic FcRn-regulated clearance mechanism is investigated using the method of matched asymptotic expansions. The broader aim of the work is to obtain further insight on the mechanism, thereby providing theoretical support for future pharmacologically-based pharmacokinetic modelling efforts. The corresponding governing equations are first non-dimensionalised and the order of magnitudes of the model parameters are assessed based on their values reported in the literature. Under the assumption of high FcRn-binding affinity, analytical approximations are derived that are valid over the characteristic phases of the problem. Additionally, relatively simple equations relating clearance and AUC to physiological model parameters are derived, which are valid over the longest characteristic time scale of the problem. For lower to moderate doses clearance is effectively linear, whereas for higher doses it is nonlinear. It is shown that for all doses sufficiently high the leading-order approximation for the IgG concentration in plasma, over the longest characteristic time scale, is independent of the initial dose. This is because IgG that is in 'excess' of FcRn is eliminated over a time scale much shorter than that of the terminal phase. In conclusion, analytical approximations of the basic FcRn mechanism have been derived using matched asymptotic expansions, leading to a simple equation relating clearance to FcRn binding affinity, the ratio of degradation and FcRn concentration, and the volumes of the system.

11.
Biomolecules ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927021

RESUMEN

Through machine learning, identifying correlations between amino acid sequences of antibodies and their observed characteristics, we developed an internal viscosity prediction model to empower the rapid engineering of therapeutic antibody candidates. For a highly viscous anti-IL-13 monoclonal antibody, we used a structure-based rational design strategy to generate a list of variants that were hypothesized to mitigate viscosity. Our viscosity prediction tool was then used as a screen to cull virtually engineered variants with a probability of high viscosity while advancing those with a probability of low viscosity to production and testing. By combining the rational design engineering strategy with the in silico viscosity prediction screening step, we were able to efficiently improve the highly viscous anti-IL-13 candidate, successfully decreasing the viscosity at 150 mg/mL from 34 cP to 13 cP in a panel of 16 variants.


Asunto(s)
Anticuerpos Monoclonales , Ingeniería de Proteínas , Viscosidad , Ingeniería de Proteínas/métodos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Aprendizaje Automático , Secuencia de Aminoácidos , Humanos
12.
Sci Rep ; 14(1): 12872, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834577

RESUMEN

The initial Phase-I single centre, single dose, randomized, double-blind, cross-over study was planned to assess the pharmacokinetic and pharmacodynamic bioequivalence of the trastuzumab biosimilar (MYL-1401O) compared to the reference Herceptin®. Their respective immunomodulation profile presented in this paper involved healthy males receiving a single infusion of both monoclonals, separated by a washout period. Sixty parameters were assessed in total, including serum cytokines, peripheral mononuclear cell (PBMC) subsets, cell activation and response to recall antigens and mitogen, pre- and post- infusion, as well as a cytokine release assay (CRA) at baseline. Trastuzumab infusion induced a transient and weak peak of serum IL-6 at 6 h, and a modulation of mononuclear cell subset profile and activation level, notably CD16 + cells. Except for CD8 + T cells, there were no significant differences between Herceptin® and MYL-1401O. In CRA, PBMC stimulated with MYL-1401O or Herceptin® similarly secreted IL-6, TNF-α, IL-1ß, GM-CSF, IFN-γ, and IL-10, but no or low level of IL-2. Interestingly, some observed adverse events correlated with IL-2 and IFN-γ in CRA. MYL-1401O exhibited a very similar immunomodulation profile to Herceptin®, strongly supporting its bioequivalence. This approach may thus be included in a proof-of-concept study. CRA may be used as a predictive assay for the evaluation of clinical monoclonals.


Asunto(s)
Biosimilares Farmacéuticos , Estudios Cruzados , Citocinas , Equivalencia Terapéutica , Trastuzumab , Humanos , Trastuzumab/farmacocinética , Biosimilares Farmacéuticos/farmacocinética , Biosimilares Farmacéuticos/administración & dosificación , Masculino , Adulto , Citocinas/metabolismo , Citocinas/sangre , Método Doble Ciego , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Inmunomodulación/efectos de los fármacos , Adulto Joven
13.
ChemSusChem ; : e202400229, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850229

RESUMEN

Over the past decade, conventional MAX phases and MXenes have garnered significant interest, primarily limited to carbides and/or nitrides. However, in 2019, the hexagonal ternary boride Ti2InB2 was successfully synthesized, sparking extensive research into hexagonal MAB (h-MAB) phases and their derived MBenes (h-MBenes). In recent years, h-MAB and h-MBenes have become focal points in the fields of physics, chemistry, and materials science. The unique properties and promising performances of h-MBenes in catalysis, energy storage, spintronics, and electrical devices underscore their considerable potential. Nonetheless, the exploration of h-MAB and h-MBenes is still in its nascent stages, with many anticipated properties and potentials yet to be fully explored. This article introduces the general concepts, crystal structure, and exfoliation properties of h-MAB phases, while also highlighting advancements in the synthesis and applications of h-MBenes. Finally, we discuss future challenges and prospects for the study of h-MAB and h-MBenes.

14.
Mol Cell Neurosci ; 130: 103949, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906341

RESUMEN

Recent advances in immunotherapeutic approaches to the treatment of Alzheimer's disease (AD) have increased the importance of understanding the exact binding preference of each amyloid-beta (Aß) antibody employed, since this determines both efficacy and risk for potentially serious adverse events known as amyloid-related imaging abnormalities. Lecanemab is a humanized IgG1 antibody that was developed to target the soluble Aß protofibril conformation. The present study prepared extracts of post mortem brain samples from AD patients and non-demented elderly controls, characterized the forms of Aß present, and investigated their interactions with lecanemab. Brain tissue samples were homogenized and extracted using tris-buffered saline. Aß levels and aggregation states in soluble and insoluble extracts, and in fractions prepared using size-exclusion chromatography or density gradient ultracentrifugation, were analyzed using combinations of immunoassay, immunoprecipitation (IP), and mass spectrometry. Lecanemab immunohistochemistry was also conducted in temporal cortex. The majority of temporal cortex Aß (98 %) was in the insoluble extract. Aß42 was the most abundant form present, particularly in AD subjects, and most soluble Aß42 was in soluble aggregated protofibrillar structures. Aß protofibril levels were much higher in AD subjects than in controls. Protofibrils captured by lecanemab-IP contained high levels of Aß42 and lecanemab bound to large, medium, and small Aß42 protofibrils in a concentration-dependent manner. Competitive IP showed that neither Aß40 monomers nor Aß40-enriched fibrils isolated from cerebral amyloid angiopathy reduced lecanemab's binding to Aß42 protofibrils. Immunohistochemistry showed that lecanemab bound readily to Aß plaques (diffuse and compact) and to intraneuronal Aß in AD temporal cortex. Taken together, these findings indicate that while lecanemab binds to Aß plaques, it preferentially targets soluble aggregated Aß protofibrils. These are largely composed of Aß42, and lecanemab binds less readily to the Aß40-enriched fibrils found in the cerebral vasculature. This is a promising binding profile because Aß42 protofibrils represent a key therapeutic target in AD, while a lack of binding to monomeric Aß and cerebral amyloid deposits should reduce peripheral antibody sequestration and minimize risk for adverse events.

15.
J Infect Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716969

RESUMEN

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for SARS-CoV-2 infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were non-hospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- and dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared to single-active mAb, treatment with dual-active mAbs led to faster viral load decline at study day 3 (p < 0.001) and day 7 (p < 0.01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than placebo (2.6% vs 0%, P < 0.001), and more frequently detected in the setting of single-active compared to dual-active mAb treatment (7.2% vs 1.1%, p < 0.01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSION: Compared to single-active mAb therapy, dual-active mAbs led to similar clinical outcomes, but significantly faster viral load decline and a lower risk of emergent resistance.

16.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792140

RESUMEN

Aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 are widely found in agriculture products, and AFB1 is considered one of the most toxic and harmful mycotoxins. Herein, a highly sensitive (at the pg mL-1 level) and group-specific enzyme-linked immunosorbent assay (ELISA) for the detection of AFB1 in agricultural and aquiculture products was developed. The AFB1 derivative containing a carboxylic group was synthesized and covalently linked to bovine serum albumin (BSA). The AFB1-BSA conjugate was used as an immunogen to immunize mice. A high-quality monoclonal antibody (mAb) against AFB1 was produced by hybridoma technology, and the mAb-based ELISA for AFB1 was established. IC50 and limit of detection (LOD) of the ELISA for AFB1 were 90 pg mL-1 and 18 pg mL-1, respectively. The cross-reactivities (CRs) of the assay with AFB2, AFG1, and AFG2 were 23.6%, 42.5%, and 1.9%, respectively, revealing some degree of group specificity. Corn flour, wheat flour, and crab roe samples spiked with different contents of AFB1 were subjected to ELISA procedures. The recoveries and relative standard deviation (RSD) of the ELISA for AFB1 in spiked samples were 78.3-116.6% and 1.49-13.21% (n = 3), respectively. Wheat flour samples spiked with the mixed AF (AFB1, AFB2, AFG1, AFG2) standard solution were measured by ELISA and LC-MS/MS simultaneously. It was demonstrated that the proposed ELISA can be used as a screening method for evaluation of AFs (AFB1, AFB2, AFG1, AFG2) in wheat flour samples.


Asunto(s)
Aflatoxina B1 , Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Ensayo de Inmunoadsorción Enzimática/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Aflatoxina B1/análisis , Aflatoxina B1/inmunología , Ratones , Contaminación de Alimentos/análisis , Límite de Detección , Zea mays/química , Harina/análisis , Agricultura , Albúmina Sérica Bovina/química
17.
Electrophoresis ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785136

RESUMEN

Double-stranded RNA is an immunogenic byproduct present in RNA synthesized with in vitro transcription. dsRNA byproducts engage virus-sensing innate immunity receptors and cause inflammation. Removing dsRNA from in vitro transcribed messenger RNA (mRNA) reduces immunogenicity and improves protein translation. Levels of dsRNA are typically 0.1%-0.5% of total transcribed RNA. Because they form such a minor fraction of the total RNA in transcription reactions, it is difficult to confidently identify discrete bands on agarose gels that correspond to the dsRNA byproducts. Thus, the sizes of dsRNA byproducts are largely unknown. Total levels of dsRNA are typically assayed with dsRNA-specific antibodies in ELISA and immuno dot-blot assays. Here we report a dsRNA-specific immuno-northern blot technique that provides a clear picture of the dsRNA size distributions in transcribed RNA. This technique could complement existing dsRNA analytical methods in studies of dsRNA byproduct synthesis, dsRNA removal, and characterization of therapeutic RNA drug substances.

18.
Appl Microbiol Biotechnol ; 108(1): 327, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717623

RESUMEN

Regulatory T cells (Tregs) are a subset of T cells participating in a variety of diseases including mycoplasmal pneumonia, contagious ecthyma, and so on. The role of Tregs in goat contagious ecthyma is not completely understood due to the lack of species-specific antibodies. Here, we developed a combination of CD4 and CD25 fluorescence monoclonal antibodies (mAb) to recognize goat Tregs and assessed its utility in flow cytometry, immunofluorescence staining. Using immunofluorescence staining, we found that the frequency of Treg cells was positively correlated with the viral load during orf virus infection. These antibodies could serve as important tools to monitor Tregs during orf virus infection in goats. KEY POINTS: • A combination of fluorescent mAbs (C11 and D12) was prepared for the detection of goat Tregs. • C11 and D12 are effective in flow cytometry, immunofluorescence staining, and C11 has excellent species specificity. • The frequency of Treg cells was positively correlated with the viral load during orf virus infection.


Asunto(s)
Anticuerpos Monoclonales , Citometría de Flujo , Cabras , Linfocitos T Reguladores , Carga Viral , Animales , Linfocitos T Reguladores/inmunología , Anticuerpos Monoclonales/inmunología , Ectima Contagioso/diagnóstico , Ectima Contagioso/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Virus del Orf/inmunología , Técnica del Anticuerpo Fluorescente/métodos , Antígenos CD4/inmunología , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/virología , Enfermedades de las Cabras/diagnóstico
19.
J Pharm Sci ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796156

RESUMEN

Therapeutic antibodies are a major class of biopharmaceutics that are applied in disease treatment because of their many advantages, including high specificity and high affinity to molecular targets. Between their production and administration, therapeutic antibodies are exposed to multiple stress conditions. Forced degradation and stress stability studies are conducted to simulate the risk of degradation and the effects of these stresses, thereby enhancing understanding of the drug product to support strategies to mitigate the impact from stressed conditions. These types of studies are also routinely conducted to evaluate product comparability when major process changes are implemented during the production. Charge variant analysis helps understand the changes in the electrostatic environment of biotherapeutics and can uncover underlying molecular level alterations associated with charge variants. Herein, we used ZipChip native capillary electrophoresis-mass spectrometry (nCE-MS) to elucidate the changes in charge variant profiles at the molecular level. In two case studies under thermal stress conditions, we observed that charge variants arose from both post-translational modifications (including deamidation, oxidation, and pyroglutamate formation) and sequence truncations at the hinge regions. Under oxidative stress conditions, oxidation was found to be the major contributor to the changes in the charge variant profiles. Under pH stress conditions, the changes in the charge variant profile were due to increased levels of deamidation, oxidation, and pyroglutamate formation. ZipChip nCE-MS analysis enables identification of charge variant species under various stress conditions, thus supporting process and formulation development of biotherapeutics.

20.
J Pharm Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38750935

RESUMEN

Characterization and understanding of protein higher order structure (HOS) is essential at all stages of biologics development. Here, two folding variants of a bispecific monoclonal antibody, the correctly folded form and an alternative configuration with reduced potency, were characterized by several HOS characterization techniques. Specifically, differential scanning calorimetry (DSC), circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), Raman and Raman optical activity (ROA) spectroscopy were used together to elucidate the impacts of disulfide bond scrambling in the fused scFv domains on the structure and thermal stability of the antibody. This study illustrates the importance of selecting appropriate biophysical characterization techniques based on the nature and magnitude of the HOS change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA