Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
J Environ Manage ; 370: 122646, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366234

RESUMEN

A recent innovation in air phytoremediation is active green walls, which utilises biofiltration technology with airflow from mechanical ventilation. While this novel technology is gaining traction, the influence of irrigation on soil moisture, and subsequently the microbial communities that play a role in air filtration is untested. In this study, the application of drip irrigation techniques in active green walls were investigated for their influence on system performance. A modular green wall system was tested, with tests across 7 different plant species, as well as a substrate only control. Water distribution across the modules, the water-carrying capacity and airflow through the substrate were measured. The microbial community present, which is critical to the phytoremediation process, was quantified by identifying individual microbial phospholipid fatty acids (PLFA) within the substrate. Results demonstrated that the lower-speed drip irrigation reduced water consumption compared to the rapid system, and had generally more uniform moisture distribution. High flow drip irrigation resulted in a water pathway phenomenon, leading to uneven moisture distribution within the green wall, and this effect was accentuated with fibrous root plant species. Drip irrigation did not change microbial community composition across planted modules, apart from increasing fungi by 6%, but did wash out bacteria at the high flow rate used (-56.67%), thus low flow rate irrigation rate is more beneficial for both plant growth and microbial community composition. The current work provides evidence that drip irrigation has considerable effects on both substrate airflow rate and substrate microbial density: both key to system air cleaning performance.

2.
Nutr Res ; 131: 54-61, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39368286

RESUMEN

Evidence is limited regarding the association of plasma niacin with the risk of hyperlipidemia in participants with diabetes. We aimed to determine the relationship between plasma niacinamide/nicotinic acid and hyperlipidemia in participants with/without diabetes. Plasma niacinamide/nicotinic acid concentrations were measured using high-performance liquid chromatography-tandem mass spectroscopy. Multivariable logistic regression analyses were performed to evaluate the association between plasma niacin and hyperlipidemia in participants with diabetes and nondiabetes in a cross-sectional study. Compared to the first quartile, plasma nicotinamide, nicotinic acid, and niacin (nicotinamide plus nicotinic acid) were associated with a 54%, 50%, and 52% lower risk of hyperlipidemia in diabetic participants, respectively, but no significant association was observed in nondiabetic participants. These inverse associations persisted across subgroups stratified by sex, age, body mass index, smoking status, alcohol consumption, and physical activity. In addition, the fully adjusted odds ratios (95% confidence intervals) for hypercholesterolemia and hypertriglyceridemia among diabetic participants were 0.54 (0.38, 0.77) and 0.61 (0.44, 0.85), respectively, when comparing to the first quartile of plasma niacin concentrations (all Ptrend < .001). This study of 2647 participants observed that plasma niacin was inversely associated with hyperlipidemia in those with diabetes.

3.
Comput Biol Chem ; 113: 108186, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39255627

RESUMEN

A medicinal pteridophyte known as Attukal Kizhangu L. has been used to cure patients for centuries by administering plant parts based on conventional and common practices. Regarding its biological functions, significant use and advancement have been made. Extract of Attukal Kizhangu L. is the subject of the current study, which uses network pharmacology as its foundation. Three targeted compounds such as α-Lapachone, Dihydrochalcone, and Piperine were chosen for additional research from the 17 Phytoconstituents that were filtered out by the Coupled UPLC-HRMS study since they followed to Lipinski rule and showed no toxicity. The pharmacokinetics and physicochemical properties of these targeted compounds were analyzed by using three online web servers pkCSM, Swiss ADME, and Protox-II. This is the first in silico study to document these compound's effectiveness against the standard drug DOX in treating Periodontitis. The Swiss target prediction database was used to retrieve the targets of these compounds. DisGeNET and GeneCards were used to extract the targets of periodontitis. The top five hub genes were identified by Cytoscape utilizing the protein-protein interaction of common genes, from which two hub genes and three binding proteins of collagenase enzymes were used for further studies AA2, PGE2, PI2, TNFA, and PGP. The minimal binding energy observed in molecular docking, indicative of the optimal docking score, corresponds to the highest affinity between the protein and ligand. To corroborate the findings of the docking study, molecular dynamics (MD) simulations, and MMPBSA calculations were conducted for the complexes involving AA2-α-LPHE, AA2-DHC, and AA2-PPR. This research concluded that AA2-DHC was the most stable complex among the investigated interactions, surpassing the stability of the other complexes examined in comparison with the standard drug DOX. Overall, the findings supported the promotion of widespread use of Attukal Kizhangu L. in clinics as a potential therapeutic agent or may be employed for the treatment of acute and chronic Periodontitis.

4.
Mater Today Bio ; 28: 101221, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39309163

RESUMEN

The exponential increasement and the attributes of medical data drive the requirement for secure medical data archiving. DNA data storage shows promise for storing sensitive and important data like medical records due to its high density and endurance. Nevertheless, current DNA data storage working scheme generally does not fully consider the data encryption, posing a risk of data corruption by routine DNA sequencing. Here, we designed a "multi-layer" encryption pipeline for medical data archiving. Initially, digital information was encrypted using Blowfish algorithm at information technology (IT) layer, followed by two-layer data encryption at the biotechnology (BT) layer. The first BT layer exploited the molecular weight of synthetic DNA or nucleoside to encrypt the key, while the second BT layer encrypted digital information within DNA sequences. Consequently, decryption involved layer-by-layer interpretation of data, including mass spectroscopy, sequencing, and Blowfish decryption, significantly enhancing data security. Utilizing mass spectroscopy to retrieve information allows for employment of both natural and unnatural nucleosides, as well as their synthetic oligonucleotides, for data storage, thereby considerably boosting scalability. Our work implies expanded flexibility of DNA-based data storage, highlighting the potential for leveraging various physical and chemical characteristics of DNA molecules to encode and access digital information.

5.
Environ Sci Pollut Res Int ; 31(44): 55935-55957, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254807

RESUMEN

A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.


Asunto(s)
Antibacterianos , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
6.
Curr Drug Deliv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39234913

RESUMEN

Introduction: Chikungunya Virus (CHIKV), a mosquito-transmitted pathogen, poses a significant global health threat owing to its widespread prevalence and high morbidity. There are no approved vaccines or antivirals for prevention or treatment. Screening of folklore medicinal plants has emerged as a promising approach to finding novel therapeutics to combat pathogens. Hence, this study aimed to evaluate the anti-chikungunya potential of folklore medicinal plants and their phytochemicals.

Methods: Maximum non-toxic concentrations (MNTD) of the extracts to Vero cells were determined by the cytotoxicity assay. A Focus-Forming Unit (FFU) assay was used to assess the antiviral activity of the extracts (at MNTD) against CHIKV in Vero cells under pre-, co-, and post-treatment conditions. GC-MS was used to detect the phytochemicals of the extracts, and Schrodinger (Maestro) software was employed for their molecular docking against the target protein of CHIKV.

Results: Azadirachta indica exhibited anti-CHIKV activity during pre- and post-treatment, decreasing the virus titer from 8.145 to 7.998 and 8.361 to 8.040 mean log10 FFU/ml, respectively. Calendula officinalis and Piper retrofractum exhibited anti-CHIKV activity only during post-treatment (8.361 to 8.135, 8.361 to 8.075). Moreover, molecular docking studies of phytochemicals detected in GCMS analysis of all the extracts revealed that many phytochemicals (especially F3, F5, F6, and A1) could bind to the non-structural protein (nSP2) target of CHIKV and suppress the viral replication.

Conclusion: The screened plants showed the ability to inhibit CHIKV infection and replication and hold potential for further investigation in developing treatments for Chikungunya.

7.
Metabolites ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195502

RESUMEN

Fever is one of the most common clinical conditions and is characterized by pyrogenic infection, malignancy, inflammation, and tissue damage, among others. Ellagic acid (EA) can inhibit the expression of related proteins on the pathway by blocking the nuclear factor kappa-B(NF-κB) signaling pathway, inhibit the levels of pro-inflammatory factors interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), increase the level of anti-inflammatory factor IL-10, and effectively alleviate inflammatory symptoms. In addition, EA can also reduce the levels of malondialdehyde(MDA) and nitric oxide(NO) in the body, increase the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase(CAT), scavenge oxidative free radicals, inhibit lipid oxidation, and achieve antipyretic and anti-inflammatory effects. The purpose of this study was to establish the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1ß, prostaglandin E2(PGE2), and cyclic adenosine monophosphate(cAMP), and clarify the mechanism of the cyclooxidase-2(COX-2)/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism. Compared to lipopolysaccharide (LPS)- treated animals, subsequent administration of EA significantly lowered the LPS-induced rectal temperature increase (p < 0.05 or p < 0.01), significantly increased serum SOD and GSH levels (p < 0.05 or p < 0.01), and significantly decreased serum MDA, IL-1ß, IL-6, and TNF-α levels (p < 0.05 or p < 0.01). In addition, compared to LPS-treated animals, subsequent administration of EA significantly decreased cerebrospinal fluid cAMP and PGE2 levels (p < 0.05 or p < 0.01), significantly decreased cAMP, significantly increased 5-HT levels (p < 0.05 or p < 0.01), and significantly down-regulated p-NF-κB p65 and COX-2 protein levels in the hypothalamus. Subsequent gas chromatography mass spectrometry(GC-MS) metabolite analysis indicated that 12 differential metabolites were detected in serum isolated 4 h after LPS treatment, and 10 differential metabolites were detected in serum collected 7 h after LPS treatment. Next, Pearson correlation analysis was used to systematically characterize the relationship between the identified metabolites and TNF-α, IL-6, MDA, SOD, PGE2, and cAMP. The levels of propionic acid, pyridine, and L-valine were up-regulated by EA, which inhibited the expression of MDA, IL-1ß, and TNF-α and increased the activity of GSH. The levels of inositol, urea, and 2-monopalmitin were down-regulated by EA, which inhibited the expression of MDA, IL-1ß, and TNF-α, increased the activity of SOD and GSH, reduced the inflammatory response, and alleviated the oxidative stress state. Combined with the results of the metabolic pathway analysis, we suggest that the pathways of the galactose metabolism, synthesis and degradation of ketone bodies, as well as ascorbic acid and aldehyde acid metabolism are closely related to the antipyretic and anti-inflammatory effects of EA. Our study established the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1ß, PGE2, and cAMP, and clarified the mechanism of the COX-2/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism.

8.
Biomed Chromatogr ; : e5967, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189519

RESUMEN

This study aims to identify potential efficacy-related biomarkers and investigate the mechanism of Youjing granule (YG) in improving spermatogenic function in rats based on metabolomics combined with network pharmacology. We obtained YG-containing serum from Sprague-Dawley rats, compared it with control group serum and analyzed it using gas chromatography-mass spectroscopy to identify potential biomarkers and investigate the mechanism of YG in improving spermatogenic function in rats. Six important differential biomarkers, comprising putrescine, amidine, arginine, d-fructose-6-phosphate, l-proline and galactose, were identified in the YG-containing serum and then used to explore the potential mechanisms. The ultra-high-performance liquid chromatography-high-resolution mass spectrometry technology was adopted for the rapid separation, identification and analysis of chemical components of YG in blood. A total of 69 detected chromatographic peaks were revealed. The binding energy between core compounds and key proteins is low, among which dipsacoside B is the best. The outcomes suggest that YG may improve spermatogenic function in rats by facilitating the development of spermatogonial stem cells, counteracting oxidative stress and controlling cellular apoptosis. Youjing granule may also affect the energy required for sperm production or influence sperm growth and maturation.

9.
Chempluschem ; : e202400448, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190502

RESUMEN

Various techniques are available to illuminate geometric structures of molecular ions in gas phase, such as Förster Resonance Energy Transfer (FRET) informing on distances between two dyes covalently attached to a molecule. Typically, cationic rhodamines, which absorb and emit visible light, are used for labeling. Extensive work has revealed that the transition energy of a rhodamine is intricately linked to its nearby microenvironment, with nearby charges causing Stark-shifted emission. This occurs because the inter-dye Coulomb interaction is weaker in the excited state (S1) than in the ground state (S0) due to the increase in polarizability upon excitation. Therefore, absorption and emission spectra, along with FRET efficiencies, provide insights into structural motifs. At room temperature, multiple conformers often co-exist, leading to overlapping absorption bands among different conformers and broad spectra. To study specific conformers, it is necessary to isolate them, for example, using ion-mobility spectrometry. Another approach is to reduce temperature, which results in spectral narrowing and distinct absorption bands, allowing for the selection of specific conformers through selective excitation. Here, we describe the instrumentation used for cryogenically cold FRET experiments and discuss recent results for small model systems, as well as future directions for a technique still in its infancy.

10.
Genes (Basel) ; 15(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062697

RESUMEN

BACKGROUND: Polymorphism rs1049434 characterizes the nonsynonymous exchange of adenosine (A) by thymidine (T) in the gene for monocarboxylate transporter 1 (MCT1). We tested whether T-allele carriers of rs1049434 demonstrate increased accumulation of markers of metabolic strain. METHODS: Physically active, healthy, young male subjects (n = 22) conducted a power-matched one-legged cycling exercise to exhaustion. Metabolic substrates in capillary blood, selected metabolic compounds, and indices for the slow oxidative phenotype of vastus lateralis muscle were quantified in samples collected before and after exercise. The genotypes of the rs1049434 polymorphism were determined with polymerase chain reactions. RESULTS: One-legged exercise affected the concentration of muscle metabolites entering the tricarboxylic acid cycle, such as acetyl-co-enzyme A (+448%) and acetyl-L-carnitine (+548%), muscle glycogen (-59%), and adenosine monophosphate (-39%), 30 min post-exercise. Exercise-related variability in the muscular concentration of glycogen, long-chain acyl co-enzyme As and a triglyceride, nicotinamide adenine dinucleotide (NADH), and adenosine monophosphate (AMP) interacted with rs1049434. T-allele carriers demonstrated a 39% lesser reduction in glycogen after exercise than non-carriers when NADH increased only in the non-carriers. Muscle lactate concentration was 150% higher, blood triacyl-glyceride concentration was 53% lower, and slow fiber percentage was 20% lower in T-allele carriers. DISCUSSION: The observations suggest a higher anaerobic glycolytic strain during exhaustive exercise and a lowered lipid handling in T-allele non-carriers.


Asunto(s)
Alelos , Ejercicio Físico , Transportadores de Ácidos Monocarboxílicos , Polimorfismo de Nucleótido Simple , Simportadores , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Adulto , Simportadores/genética , Simportadores/metabolismo , Adulto Joven , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Genotipo
11.
Polymers (Basel) ; 16(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39000627

RESUMEN

Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nevertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn), weight average molecular mass (Mw) and others are not determined by MS, as they are commonly characterized by gel permeation chromatography (GPC). In order to calculate polymer properties from MS, a Python script was developed to interpret polymer properties from spectroscopic raw data. Polypy script can be considered a peak detection and area distribution method, and represents the result of combining the MS raw data filtered using Root Mean Square (RMS) calculation with molecular classification based on theoretical molar masses. Polypy filters out areas corresponding to repetitive units. This approach facilitates the identification of the polymer chains and calculates their properties. The script also integrates visualization graphic tools for data analysis. In this work, aryl resin (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) was the study case polymer molecule, and is composed of oligomer chains distributed mainly in the range of dimers to tetramers, in some cases presenting traces of pentamers and hexamers in the distribution profile of the oligomeric chains. Epoxy resin has Mn = 607 Da, Mw = 631 Da, and polydispersity (Pd) of 1.015 (data given by GPC). With Polypy script, calculations resulted in Mn = 584.42 Da, Mw = 649.29 Da, and Pd = 1.11, which are consistent results if compared with GPC characterization. Additional information, such as the percentage of oligomer distribution, was also calculated and for this polymer matrix it was not possible to retrieve it from the GPC method. Polypy is an approach to characterizing major polymer chemical properties using only MS raw spectra, and it can be utilized with any MS raw data for any polymer matrix.

12.
Biosensors (Basel) ; 14(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056600

RESUMEN

Despite extensive research efforts, cancer continues to stand as one of the leading causes of death on a global scale. To gain profound insights into the intricate mechanisms underlying cancer onset and progression, it is imperative to possess methodologies that allow the study of cancer cells at the single-cell level, focusing on critical parameters such as cell morphology, metabolism, and molecular characteristics. These insights are essential for effectively discerning between healthy and cancerous cells and comprehending tumoral progression. Recent advancements in microscopy techniques have significantly advanced the study of cancer cells, with Raman microspectroscopy (RM) emerging as a particularly powerful tool. Indeed, RM can provide both biochemical and spatial details at the single-cell level without the need for labels or causing disruptions to cell integrity. Moreover, RM can be correlated with other microscopy techniques, creating a synergy that offers a spectrum of complementary insights into cancer cell morphology and biology. This review aims to explore the correlation between RM and other microscopy techniques such as confocal fluoresce microscopy (CFM), atomic force microscopy (AFM), digital holography microscopy (DHM), and mass spectrometry imaging (MSI). Each of these techniques has their own strengths, providing different perspectives and parameters about cancer cell features. The correlation between information from these various analysis methods is a valuable tool for physicians and researchers, aiding in the comprehension of cancer cell morphology and biology, unraveling mechanisms underlying cancer progression, and facilitating the development of early diagnosis and/or monitoring cancer progression.


Asunto(s)
Neoplasias , Espectrometría Raman , Humanos , Microscopía de Fuerza Atómica
13.
Biomed Chromatogr ; : e5968, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039695

RESUMEN

Withania somnifera belongs to the family Solanaceae, commonly called ashwagandha, and is traditionally used as an astringent, hepatoprotective and antioxidant, and as a treatment for rheumatism. Therefore the current study aimed to explore the dichloromethane fraction of W. somnifera whole plant (DCFWS) and ethyl acetate fraction of W. somnifera (EAFWS) using gas chromatoghraphy-mass spectrometry (GC-MS) analysis and to find the acetylcholinesterase inhibition potential along with spasmolytic activity. The GC-MS-detected phytochemicals were 2,4-bis(1,1-dimethylethyl), hexadecanoic acid, 1-nonadecene and 11-octadecenoic acid. The DCFWS and EAFWS exhibited acetylcholinesterase inhibitory potential with significant inhibitory concentration values. The acute toxicity results of both fractions showed high toxicity, causing emesis at 0.5 g and both emesis and diarrhea at 1 g/kg. Both fractions exhibited significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg) induced constipation. Both DCFWS (66.8 ± 3.85%) and EAFWS (58.58 ± 3.28%) significantly (p ≤ 0.05) increased charcoal movement compared with distal water (43.93 ± 4.34%). Similarly the effect of DCFWS on KCl-induced (80 mm) contraction was more significant as compared with EAFWS. It was concluded that the plant can be used in the treatment of gastrointestinal tract diseases such as constipation. Furthermore, additional work is required in the future to determine the bioactive compounds that act as therapeutic agents in W. somnifera.

14.
Sci Total Environ ; 946: 174401, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38964414

RESUMEN

Freshwater lakes serve as active conduits for processing terrestrial dissolved organic matter (DOM), playing a crucial role in global carbon cycle. Little attention has been paid to how hydrological connectivity to a large river would affect the molecular signatures of DOM in lakes. Here, we systematically characterized and compared the molecular signatures of DOM in surface waters of four large freshwater lakes in the middle and lower Changjiang River basin that are directly connected to the river (Lake Dongting and Lake Poyang, referred to as Lakeconnected) or indirectly connected to the river (Lake Chao and Lake Tai, referred to as Lakenonconnected). The DOM in Lakeconnected was found to have similar total organic carbon (TOC)-normalized contents and characteristics of lignin phenols to the DOM in surface waters from the upstream Changjiang river, indicating allochthonous/terrestrial sources from riverine inputs. As indicated by the UV-vis and fluorescence analyses, the DOM in Lakeconnected overall had higher aromaticity and larger average molecular weight as well as stronger allochthonous feature compared to the DOM in Lakenonconnected. Consistently, the FT-ICR MS analysis revealed that the DOM in Lakeconnected had higher molecular diversity, higher unsaturation degree, and larger proportions of highly aromatic compounds. In contrast, the DOM in Lakenonconnected had larger proportions of lipids and peptide-like structures, but lower proportions of aromatic compounds, which could be ascribed to the enhanced autochthonous production and photodegradation due to pollution and eutrophication as well as longer water residence time. The results highlight the strong impacts of the hydrological connectivity to a large river on the molecular signatures of lake DOM. CAPSULE: The hydrological connectivity of the lakes to the Changjiang River has strong impacts on the molecular signatures of lake DOM.

15.
J Pharm Biomed Anal ; 248: 116304, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906070

RESUMEN

"Guava" (Acca sellowiana) is an unconventional edible plant from Brazil. It is used in traditional medicine as an anti-diabetic; however, pharmacological studies on this plant are scarce. This study aimed to evaluate the chemical and safety profile of an aqueous A. sellowiana peel extract (ASPE) and its effects on endothelial EA.hy926 cells under glucose overload and in vivo (Artemia salina). An ethanolic extract from A. sellowiana peels (ASPEetOH) was also produced and characterized. Results showed that ASPE did not present in vivo toxicity, and it was found to contain high phenolic content and redox capacity. ASPE (50 µg/mL; 24 h) prevented oxidative stress and mitochondrial dysfunction, besides positively modulating Sirtuins 1 and 3, and prevented the increase of COX-2 and NF-kß expression levels in EA.hy926 cells under glucose overload. Chromatographic fractionation, metabolite profiling, spectroscopic and bioinformatics analyses revealed the presence of phenolic acids, flavan-3-ols, flavonols, flavones, flavanones, and anthocyanidins, displaying a diversity of compounds in the crude and fractionated ASPEetOH. This study provided evidence on the safety profile, chemical composition, and pharmacological activities of A. sellowiana.


Asunto(s)
Células Endoteliales , Glucosa , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Glucosa/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Fenoles/análisis , Fenoles/farmacología , Brasil , Antioxidantes/farmacología
16.
Pathogens ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38921730

RESUMEN

The genus Aeromonas includes well-known pathogenic species for fishes and humans that are widely distributed in the aquatic environment and foods. Nowadays, one of the main issues related to wild Aeromonas isolates is their identification at the species level, which is challenging using classical microbiological and biomolecular methods. This study aims to test MALDI-TOF MS technology in the identification of Aeromonas strains isolated from n. 60 retail sushi and sashimi boxes using an implemented version of the SARAMIS software V4.12. A total of 43 certified Aeromonas strains were used to implement the SARAMIS database by importing the spectra obtained from their identification. The original SARAMIS version (V4.12) failed to recognize 62.79% of the certified strains, while the herein-implemented version (V4.12plus) allowed the identification of all the certified strains at least to the genus level with a match of no less than 85%. Regarding the sushi and sashimi samples, Aeromonas spp. was detected in n. 18 (30%) boxes. A total of 127 colonies were identified at the species level, with A. salmonicida detected as the most prevalent species, followed by A. bestiarum and A. caviae. Based on the results of the present study, we could speculate that MALDI-TOF technology could be a useful tool both for the food industry to monitor product contamination and for clinical purposes to make diagnoses effectively and quickly.

17.
Proteomics ; 24(14): e2300351, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700052

RESUMEN

Single-cell proteomics is currently far less productive than other approaches. Still, the proteomic community is having trouble adapting to the limitation of having to examine fewer cells than they would like. Studies on a small number of cells should be carefully planned to maximize the chances of success in this situation. This study aims to determine how sample size and measurement speed (slope)/variation affect the accuracy of a protein proteome mass spectrometric determination. The determination accuracy was shown to increase, and the false positive rate was shown to decrease as the sample size increased from 7 to 100 cells and the measurement slope/variation (S/V) ratio increased from 1 to 6. Furthermore, it was discovered that the number of cells in the sample increased the accuracy of this estimate. Thus, for 100 cells, the measurement S/V ratio was typically estimated to be very close to the real-world value, with a standard deviation of 0.35. For sample sizes from 7 to 100 cells, this accuracy was seen when calculating the measurement S/V ratio. The findings can help researchers plan experiments for mass spectroscopic protein proteome determination and other research purposes.


Asunto(s)
Espectrometría de Masas , Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas/métodos , Humanos , Análisis de la Célula Individual/métodos , Tamaño de la Muestra
18.
Sci Rep ; 14(1): 12171, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806547

RESUMEN

Upon implanting tissue-engineered heart valves (TEHVs), blood-derived macrophages are believed to orchestrate the remodeling process. They initiate the immune response and mediate the remodeling of the TEHV, essential for the valve's functionality. The exact role of another macrophage type, the tissue-resident macrophages (TRMs), has not been yet elucidated even though they maintain the homeostasis of native tissues. Here, we characterized the response of hTRM-like cells in contact with a human tissue engineered matrix (hTEM). HTEMs comprised intracellular peptides with potentially immunogenic properties in their ECM proteome. Human iPSC-derived macrophages (iMφs) could represent hTRM-like cells in vitro and circumvent the scarcity of human donor material. iMφs were derived and after stimulation they demonstrated polarization towards non-/inflammatory states. Next, they responded with increased IL-6/IL-1ß secretion in separate 3/7-day cultures with longer production-time-hTEMs. We demonstrated that iMφs are a potential model for TRM-like cells for the assessment of hTEM immunocompatibility. They adopt distinct pro- and anti-inflammatory phenotypes, and both IL-6 and IL-1ß secretion depends on hTEM composition. IL-6 provided the highest sensitivity to measure iMφs pro-inflammatory response. This platform could facilitate the in vitro immunocompatibility assessment of hTEMs and thereby showcase a potential way to achieve safer clinical translation of TEHVs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macrófagos , Ingeniería de Tejidos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Ingeniería de Tejidos/métodos , Macrófagos/inmunología , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Diferenciación Celular , Andamios del Tejido/química
19.
Food Chem ; 453: 139621, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761728

RESUMEN

Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.


Asunto(s)
Catecol Oxidasa , Microondas , Catecol Oxidasa/metabolismo , Catecol Oxidasa/química , Manipulación de Alimentos , Calor , Gusto , Humanos , Bebidas/análisis , Cinética , Estabilidad de Enzimas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Frutas/química , Frutas/enzimología
20.
Nat Prod Res ; : 1-12, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720660

RESUMEN

Compounds of natural origin are in burgeoning demand driven by heightened awareness of their health benefits. We present the maiden study on the production of neurosporaxanthin, a carotenoid, from marine Rhodococcus ruber O16N. Analysing various physical parameters including carbon source, agitation speed, temperature, salt and pH, we found that agitation adversely affects biomass and carotenoid production. Isolate O16N grew well, when medium was supplemented with mannitol or sorbitol, CaCl2, at pH 6 and best carotenoid production was observed when sorbitol or fructose and CaCl2 was supplemented in media at pH 7 at 37 °C in static condition with the maximum carotenoid yield of 1097 mg/L, whopping 18-fold more as compared to nutrient medium. Furthermore, thorough characterisation identified the produced carotenoid as neurosporoxanthin. These findings highlight the potential of marine Rhodococcus ruber O16N as a valuable source for neurosporaxanthin production and emphasise the importance of optimising physical parameters for maximising carotenoid yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA