Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antibiotics (Basel) ; 13(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199987

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34886390

RESUMEN

We investigated physiological responses and exercise capacity in sedentary young smokers during sub-maximal and maximal test and its impact on dyspnea and exercise intolerance. Fifty sedentary male smokers and non-smokers (age: 24 ± 1 years., weight: 71 ± 9 kg, height: 177.3 ± 4.8 cm, body mass index: 22.6 ± 2.5 kg/m2) underwent two visits with pulmonary function tests, breathing pattern, and inspiratory capacity measurement at rest and during sub-maximal and maximal exercise. Smokers show reduced exercise capacity during six minutes walk test (6-MWT) with decreased walked distance (p < 0.001) and inspiratory capacity (p < 0.05). During cardiopulmonary exercise test (CPET), smokers had higher minute ventilation VE for a given submaximal intensity (p < 0.05) and lower minute ventilation at maximal exercise (p < 0.001). End expiratory lung volume was significantly lower in sedentary smokers at rest (p < 0.05), at ventilatory threshold during exercise (p < 0.05), but not during peak exercise. End inspiratory lung volume was significantly lower in smokers at rest (p < 0.05) and ventilatory threshold (p < 0.05). Cigarette smoking alters lung function during submaximal and maximal exercise. This alteration is manifested by the development of dynamic hyperinflation contributing to exercise capacity limitation.


Asunto(s)
Obstrucción de las Vías Aéreas , Fumadores , Adulto , Disnea/etiología , Prueba de Esfuerzo , Humanos , Capacidad Inspiratoria , Masculino , Prueba de Paso , Adulto Joven
4.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920685

RESUMEN

If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Fosfolípidos/farmacología , Estrés Mecánico , Animales , Ácido Araquidónico/análisis , Línea Celular , Ácidos Docosahexaenoicos/análisis , Masculino , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Especificidad de Órganos/efectos de los fármacos , Ósmosis , Análisis de Componente Principal
5.
J Appl Physiol (1985) ; 125(1): 190-197, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672228

RESUMEN

It is unknown whether the greater total work of breathing (WOB) with aging is due to greater elastic and/or resistive WOB. We hypothesized that older compared with younger adults would exhibit a greater total WOB at matched ventilations (V̇e) during graded exercise, secondary to greater inspiratory resistive and elastic as well as expiratory resistive WOB. Older (OA: 60 ± 8 yr; n = 9) and younger (YA: 38 ± 7 yr; n = 9) adults performed an incremental cycling test to volitional fatigue. Esophageal pressure, inspiratory (IRV) and expiratory reserve volumes (ERV), expiratory flow limitation (EFL), and ventilatory variables were measured at matched V̇e (i.e., 25, 50, and 75 l/min) during exercise. The inspiratory resistive and elastic as well as expiratory resistive WOB were quantified using the Otis method. At V̇e of 75 l/min, older adults had greater %EFL and larger tidal volumes to inspiratory capacity but smaller relative IRV ( P ≤ 0.03) than younger adults. Older compared with younger adults had greater total WOB at V̇E of 50 and 75 l/min (OA: 90 ± 43 vs. YA: 49 ± 21 J/min; P < 0.04 for both). At V̇e of 75 l/min, older adults had greater inspiratory elastic and resistive WOB (OA: 44 ± 27 vs. YA: 24 ± 22 and OA: 23 ± 15 vs. YA: 11 ± 3 J/min, respectively, P < 0.03 for both) and expiratory resistive WOB (OA: 23 ± 19 vs. YA: 14 ± 9 J/min, P = 0.02) than younger adults. These data demonstrate that aging-induced pulmonary alterations result in greater inspiratory elastic and resistive as well as expiratory resistive WOB, which may have implications for the integrated response during exercise. NEW & NOTEWORTHY Aging-induced changes to the pulmonary system result in increased work of breathing (WOB) during exercise. However, it is not known whether this higher WOB with aging is due to differences in elastic and/or resistive WOB. Herein, we demonstrate that older adults exhibited greater inspiratory elastic and resistive as well as expiratory resistive WOB during exercise.


Asunto(s)
Ejercicio Físico/fisiología , Espiración/fisiología , Trabajo Respiratorio/fisiología , Adulto , Estudios Transversales , Femenino , Humanos , Pulmón/fisiología , Mediciones del Volumen Pulmonar/métodos , Masculino , Persona de Mediana Edad , Músculos Respiratorios/fisiología , Volumen de Ventilación Pulmonar/fisiología
6.
J Theor Biol ; 446: 205-211, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29548734

RESUMEN

The patella is traditionally understood to be a "joint spacer" that increases the moment arm of the patellar tendon. This characterisation is unsatisfactory as it fails to explain the more interesting characteristics of the patella: 1) that the changing pivot point of the patella causes the ratio of quadriceps to patellar tendon force to almost double as the knee flexes; 2) that the patellar tendon exerts an anteriorly directed force on the tibia when the knee is extended but this switches to a posterior draw as the knee flexes; and 3) that the presence of the patella allows the quadriceps to exert different moments on the femur and tibia. Here, I use a simple, model of the geometry of the knee to calculate the changes in the effective moment arms of the quadriceps on the femur and tibia as the knee extends during vertical jumping. These effective moment arms are then contrasted with the actual changes in moments seen during a vertical jump. This analysis demonstrates that the changing geometry of the knee alone can explain 93% (p < 0.05) of the variance in the characteristic femoral to tibial pattern of moment production during jumping - suggesting that the mechanics of the patella have a crucial influence on the coordination of jumping. These results lend support to the contention that mechanical considerations play a pivotal role in the control of movement by creating a stronger imperative towards a particular movement solution than might be suggested by the large degree of redundancy in the neuromuscular system. This idea is consistent with dynamic systems theories of motor control, i.e. the mechanical structure of the musculoskeletal system itself is important in the organisation of movement (so called mechanical intelligence).


Asunto(s)
Articulación de la Rodilla/fisiología , Locomoción/fisiología , Modelos Biológicos , Rótula/fisiología , Ligamento Rotuliano/fisiología , Fenómenos Biomecánicos , Fémur/fisiología , Humanos , Tibia/fisiología
7.
Ann Am Thorac Soc ; 11(10): 1528-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25380058

RESUMEN

RATIONALE: Adults born very to extremely preterm, with or without bronchopulmonary dysplasia (BPD), have obstructive lung disease, but it is unknown whether this results in respiratory limitations, such as mechanical constraints to Vt expansion during exercise leading to intolerable dyspnea and reduced exercise tolerance, as it does in patients with chronic obstructive pulmonary disease. OBJECTIVES: To test the hypothesis that adult survivors of preterm birth (≤32 wk gestational age) with (n = 20) and without BPD (n = 15) with reduced exercise capacity demonstrate clinically important respiratory limitations at near-maximal exercise compared with full-term control subjects (n = 20). METHODS: Detailed ventilatory and sensory measurements were made before and during exercise on all patients in the three study groups. MEASUREMENTS AND MAIN RESULTS: During exercise at 90% of peak [Formula: see text]o2 ([Formula: see text]o2peak), inspiratory reserve volume decreased to ∼0.5 L in all groups, but this occurred at significantly lower absolute workloads and [Formula: see text]e in ex-preterm subjects with and without BPD compared with full-term control subjects. Severe dyspnea was present and similar at comparable [Formula: see text]e between all groups, but leg discomfort at comparable workloads was greater in ex-preterm subjects with and without BPD compared with control subjects. At 50 to 90% of [Formula: see text]o2peak, exercise-induced expiratory flow limitation was significantly greater in ex-preterm subjects with BPD compared with ex-preterm subjects without BPD and control subjects. The degree of expiratory flow limitation in ex-preterm subjects with and without BPD was significantly related to neonatal O2 therapy duration. CONCLUSIONS: Severe dyspnea and leg discomfort associated with critical constraints on Vt expansion may lead to reduced exercise tolerance in adults born very or extremely preterm, whether or not their birth was complicated by BPD and despite differences in expiratory flow limitation. In this regard, adults born very or extremely preterm have respiratory limitations to exercise similar to patients with chronic obstructive pulmonary disease.


Asunto(s)
Displasia Broncopulmonar/fisiopatología , Tolerancia al Ejercicio/fisiología , Volumen Espiratorio Forzado/fisiología , Nacimiento Prematuro/fisiopatología , Sobrevivientes/estadística & datos numéricos , Adolescente , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Estudios Retrospectivos , Adulto Joven
8.
Front Psychol ; 5: 306, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24795669

RESUMEN

Researchers in cognitive neuroscience have become increasingly interested in how different aspects of tool use are integrated and represented by the brain. Comparatively less attention has been directed toward tool use actions themselves and how effective tool use behaviors are coordinated. In response, we take this opportunity to consider the mechanical principles of tool use actions and their relationship to motor learning. Using kinematic analysis, we examine both functional dynamics and joint contribution profiles of subjects with different levels of experience in a primordial percussive task. Our results show that the ability to successfully produce stone flakes using the Oldowan method did not correspond with any particular joint contribution profile. Rather, expertise in this tool use action was principally associated with the subject's ability to regulate the functional parameters that define the task itself.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA