Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
Elife ; 132024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263961

RESUMEN

NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.


Asunto(s)
Aparato de Golgi , Proteína con Dominio Pirina 3 de la Familia NLR , Nigericina , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aparato de Golgi/metabolismo , Humanos , Acilación , Nigericina/farmacología , Animales , Inflamasomas/metabolismo , Células HEK293
2.
Biochem Biophys Res Commun ; 734: 150609, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232459

RESUMEN

RAB family proteins, which are small GTPases, are integral to the process of eukaryotic membrane trafficking. In the nematode, Caenorhabditis elegans, 31 RAB proteins have been identified through genome sequencing. Using an RNAi screen specifically targeting C. elegans rab genes, we identified multiple genes that are involved in the regulation of larval development, in particular, the rab-18 gene. Our molecular genetic studies resulted in several findings. First, RAB-18 predominantly functions in the intestine to regulate larval development by modulating steroid hormone signaling. Second, the C. elegans cholesterol transporter NCR-1 is a target of RAB-18 in the intestine. Third, the membrane trafficking of NCR-1 to the apical side in intestinal cells is particularly influenced by RAB-18. Finally, RAB-18 and NCR-1 possibly co-localize on membrane vesicles. Our study is the first to demonstrate the relationship between a RAB protein and a cholesterol transporter, in which the RAB protein probably drives the transporter to the apical membrane in the intestine to regulate cholesterol uptake. This study provides insight into the molecular mechanisms underlying human disease stemming from a transport defect of cholesterol and its derivative.

3.
Plant Cell Physiol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215599

RESUMEN

Plants maintain nutrient homeostasis by controlling the activities and abundance of nutrient transporters. In Arabidopsis thaliana, the borate (B) transporter BOR1 plays a role in the efficient translocation of B under low-B conditions. BOR1 undergoes polyubiquitination in the presence of sufficient B and is then transported to the vacuole via multivesicular bodies (MVBs) to prevent B accumulation in tissues at a toxic level. A previous study indicated that BOR1 physically interacts with µ subunits of adaptor protein complexes AP-3 and AP-4, both involved in vacuolar sorting pathways. In this study, we investigated the roles of AP-3 and AP-4 subunits in BOR1 trafficking in Arabidopsis. The lack of AP-3 subunits did not affect either vacuolar sorting or polar localization of BOR1-GFP, whereas the absence of AP-4 subunits resulted in a delay in high-B-induced vacuolar sorting without affecting polar localization. Super-resolution microscopy revealed a rapid sorting of BOR1-GFP into AP-4-positive spots in the trans-Golgi network (TGN) upon high-B supply. These results indicate that AP-4 is involved in sequestration of ubiquitinated BOR1 into a TGN-specific subdomain "vacuolar-trafficking zone," and is required for efficient sorting to MVB and vacuole. Our findings elucidate the rapid vacuolar sorting process facilitated by AP-4 in plant nutrient transporters.

4.
Curr Biol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39181128

RESUMEN

Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA). However, molecular details of the force-dependent regulation of BAG3 have remained elusive so far. Here, we demonstrate that mechanical stress triggers the dephosphorylation of BAG3 in human muscle and in isolated cells. We identify force-regulated phospho-switches in BAG3 that control CASA complex assembly and CASA activity. Differential proteomics reveal RAB GTPases, which organize membrane traffic and fusion, as dephosphorylation-dependent interactors of BAG3. In fact, RAB7A and RAB11B are shown here to be essential for CASA in skeletal muscle cells. Moreover, BAG3 dephosphorylation is also observed upon induction of mitophagy, suggesting an involvement of the cochaperone in the RAB7A-dependent autophagic engulfment of damaged mitochondria in exercised muscle. Cooperation of BAG3 with RAB7A relies on a direct interaction of both proteins, which is regulated by the nucleotide state of the GTPase and by association with the autophagosome membrane protein LC3B. Finally, we provide evidence that BAG3 and RAB7A also cooperate in non-muscle cells and propose that overactivation of CASA in RAB7A-L129F patients contributes to the loss of peripheral neurons in Charcot-Marie-Tooth neuropathy.

5.
Mol Cell ; 84(17): 3336-3353.e7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173637

RESUMEN

NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.


Asunto(s)
Inflamasomas , Lipoilación , Proteína con Dominio Pirina 3 de la Familia NLR , Transporte de Proteínas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Animales , Fosforilación , Humanos , Ratones , Células HEK293 , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Centro Organizador de los Microtúbulos/metabolismo , Ratones Endogámicos C57BL , Red trans-Golgi/metabolismo , Ratones Noqueados , Endosomas/metabolismo , Mitocondrias/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(34): e2409341121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145939

RESUMEN

Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and ß2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Chaperonas Moleculares , Complejo 2 de Proteína Adaptadora/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Unión Proteica , Endocitosis/fisiología , Transporte de Proteínas
7.
Biol Open ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39078271

RESUMEN

Although some budding yeasts have proved tractable and intensely studied models, others are more recalcitrant. Debaryomyces hansenii, an important yeast species in food and biotechnological industries with curious physiological characteristics, has proved difficult to manipulate genetically and remains poorly defined. To remedy this, we have combined live cell fluorescent dyes with high-resolution imaging techniques to define the sub-cellular features of D. hansenii, such as the mitochondria, nuclei, vacuoles and the cell wall. Using these tools, we define biological processes like the cell cycle, organelle inheritance and various membrane trafficking pathways of D. hansenii for the first time. Beyond this, reagents designed to study Saccharomyces cerevisiae proteins were used to access proteomic information about D. hansenii. Finally, we optimised the use of label-free holotomography to image yeast, defining the physical parameters and visualising sub-cellular features like membranes and vacuoles. Not only does this work shed light on D. hansenii but this combinatorial approach serves as a template for how other cell biological systems, which are not amenable to standard genetic procedures, can be studied.


Asunto(s)
Debaryomyces , Proteómica/métodos , Vacuolas/ultraestructura , Vacuolas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/ultraestructura
8.
J Biol Chem ; 300(8): 107553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002672

RESUMEN

The plasma membrane (PM) is constantly exposed to various stresses from the extracellular environment, such as heat and oxidative stress. These stresses often cause the denaturation of membrane proteins and destabilize PM integrity, which is essential for normal cell viability and function. For maintenance of PM integrity, most eukaryotic cells have the PM quality control (PMQC) system, which removes damaged membrane proteins by endocytosis. Removal of damaged proteins from the PM by ubiquitin-mediated endocytosis is a key mechanism for the maintenance of PM integrity, but the importance of the early endosome in the PMQC system is still not well understood. Here we show that key proteins in early/sorting endosome function, Vps21p (yeast Rab5), Vps15p (phosphatidylinositol-3 kinase subunit), and Vps3p/8p (CORVET complex subunits), are involved in maintaining PM integrity. We found that Vps21p-enriched endosomes change the localization in the vicinity of the PM in response to heat stress and then rapidly fuse and form the enlarged compartments to efficiently transport Can1p to the vacuole. Additionally, we show that the deubiquitinating enzyme Doa4p is also involved in the PM integrity and its deletion causes the mislocalization of Vps21p to the vacuolar lumen. Interestingly, in cells lacking Doa4p or Vps21p, the amounts of free ubiquitin are decreased, and overexpression of ubiquitin restored defective cargo internalization in vps9Δ cells, suggesting that defective PM integrity in vps9Δ cells is caused by lack of free ubiquitin.


Asunto(s)
Membrana Celular , Endocitosis , Endosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Unión al GTP rab5 , Endocitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Membrana Celular/metabolismo , Endosomas/metabolismo , Respuesta al Choque Térmico/fisiología , Vacuolas/metabolismo , Vacuolas/genética , Calor , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab
9.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056144

RESUMEN

In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Although physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the adaptor protein (AP)-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI strategy to compare the interactome of the different AP complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.


Asunto(s)
Sistemas CRISPR-Cas , Humanos , Técnicas de Sustitución del Gen , Mapeo de Interacción de Proteínas/métodos , Células HEK293
10.
Cell Mol Life Sci ; 81(1): 301, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003683

RESUMEN

Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.


Asunto(s)
Subunidades de Proteína , Humanos , Animales , Subunidades de Proteína/metabolismo , Células HEK293 , Potenciales de la Membrana , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/genética
11.
Autophagy ; : 1-16, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38953305

RESUMEN

Macroautophagy, simply referred to below as autophagy, is an intracellular degradation system that is highly conserved in eukaryotes. Since the processes involved in autophagy are accompanied by membrane dynamics, RAB small GTPases, key regulators of membrane trafficking, are generally thought to regulate the membrane dynamics of autophagy. Although more than half of the mammalian RABs have been reported to be involved in canonical and selective autophagy, no consensus has been reached in regard to the role of RABs in mammalian autophagy. Here, we comprehensively analyzed a rab-knockout (KO) library of MDCK cells to reevaluate the requirement for each RAB isoform in basal and starvation-induced autophagy. The results revealed clear alteration of the MAP1LC3/LC3-II level in only four rab-KO cells (rab1-KO, rab2-KO, rab7a-KO, and rab14-KO cells) and identified RAB14 as a new regulator of autophagy, specifically at the autophagosome maturation step. The autophagy-defective phenotype of two of these rab-KO cells, rab2-KO and rab14-KO cells, was very mild, but double KO of rab2 and rab14 caused a severer autophagy-defective phenotype (greater LC3 accumulation than in single-KO cells, indicating an overlapping role of RAB2 and RAB14 during autophagosome maturation. We also found that RAB14 is phylogenetically similar to RAB2 and that it possesses the same properties as RAB2, i.e. autophagosome localization and interaction with the HOPS subunits VPS39 and VPS41. Our findings suggest that RAB2 and RAB14 overlappingly regulate the autophagosome maturation step through recruitment of the HOPS complex to the autophagosome.Abbreviation: AID2: auxin-inducible degron 2; ATG: autophagy related; BafA1: bafilomycin A1; CKO: conditional knockout; EBSS: Earle's balanced salt solution; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; HRP: horseradish peroxidase; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MDCK: Madin-Darby canine kidney; mAb: monoclonal antibody; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; 5-Ph-IAA: 5-phenyl-indole-3-acetic acid; pAb: polyclonal antibody; siRNA: small interfering RNA; SNARE: soluble NSF-attachment protein receptor; TF: transferrin; WT: wild-type.

12.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947477

RESUMEN

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

13.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38903076

RESUMEN

Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins. To identify new players involved in LYTL, we performed unbiased proteomics on isolated lysosomes after LRRK2 kinase inhibition. Our results demonstrate that there is recruitment of RILPL1 to ruptured lysosomes via LRRK2 activity to promote phosphorylation of RAB proteins at the lysosomal surface. RILPL1, which is also a member of the RHD family, enhances the clustering of LRRK2-positive lysosomes in the perinuclear area and causes retraction of LYTL tubules, in contrast to JIP4 which promotes LYTL tubule extension. Mechanistically, RILPL1 binds to p150Glued, a dynactin subunit, facilitating the transport of lysosomes and tubules to the minus end of microtubules. Further characterization of the tubulation process revealed that LYTL tubules move along tyrosinated microtubules, with tubulin tyrosination proving essential for tubule elongation. In summary, our findings emphasize the dynamic regulation of LYTL tubules by two distinct RHD proteins and pRAB effectors, serving as opposing motor adaptor proteins: JIP4, promoting tubulation via kinesin, and RILPL1, facilitating tubule retraction through dynein/dynactin. We infer that the two opposing processes generate a metastable lysosomal membrane deformation that facilitates dynamic tubulation events.

14.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763336

RESUMEN

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Asunto(s)
Adenosina Trifosfatasas , Humanos , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , Transporte Biológico , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Conformación Proteica
15.
J Biol Chem ; 300(6): 107348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718866

RESUMEN

Iron is an essential element for proper cell functioning, but unbalanced levels can cause cell death. Iron metabolism is controlled at the blood-tissue barriers provided by microvascular endothelial cells. Dysregulated iron metabolism at these barriers is a factor in both neurodegenerative and cardiovascular diseases. Mammalian iron efflux is mediated by the iron efflux transporter ferroportin (Fpn). Inflammation is a factor in many diseases and correlates with increased tissue iron accumulation. Evidence suggests treatment with interleukin 6 (IL-6) increases intracellular calcium levels and calcium is known to play an important role in protein trafficking. We have shown that calcium increases plasma membrane localization of the iron uptake proteins ZIP8 and ZIP14, but if and how calcium modulates Fpn trafficking is unknown. In this article, we examined the effects of IL-6 and calcium on Fpn localization to the plasma membrane. In HEK cells expressing a doxycycline-inducible GFP-tagged Fpn, calcium increased Fpn-GFP membrane presence by 2 h, while IL-6 increased membrane-localized Fpn-GFP by 3 h. Calcium pretreatment increased Fpn-GFP mediated 55Fe efflux from cells. Endoplasmic reticulum calcium stores were shown to be important for Fpn-GFP localization and iron efflux. Use of calmodulin pathway inhibitors showed that calcium signaling is important for IL-6-induced Fpn relocalization. Studies in brain microvascular endothelial cells in transwell culture demonstrated an initial increase in 55Fe flux with IL-6 that is reduced by 6 h coinciding with upregulation of hepcidin. Overall, this research details one pathway by which inflammatory signaling mediated by calcium can regulate iron metabolism, likely contributing to inflammatory disease mechanisms.


Asunto(s)
Calcio , Proteínas de Transporte de Catión , Membrana Celular , Interleucina-6 , Hierro , Transporte de Proteínas , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Hierro/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo , Células HEK293 , Animales , Células Endoteliales/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética
16.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578235

RESUMEN

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Endosomas , ATPasas de Translocación de Protón Vacuolares , Proteínas de Unión a GTP rab7 , Animales , Humanos , Endosomas/metabolismo , Células HeLa , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
17.
Eur J Protistol ; 94: 126078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688044

RESUMEN

Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.


Asunto(s)
Eucariontes , Vacuolas , Eucariontes/fisiología , Osmorregulación/fisiología
18.
J Exp Bot ; 75(12): 3700-3712, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38606692

RESUMEN

Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.


Asunto(s)
Pared Celular , Enfermedades de las Plantas , Pared Celular/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Plantas/microbiología , Plantas/inmunología , Inmunidad de la Planta , Transporte Biológico
19.
J Biol Chem ; 300(5): 107274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588809

RESUMEN

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.


Asunto(s)
Proteínas R-SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Vacuolas/genética , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Fusión de Membrana , Exocitosis , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Mutación
20.
Protein Sci ; 33(5): e4980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607248

RESUMEN

Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.


Asunto(s)
Endosomas , Enfermedad de Parkinson , Humanos , Mutación , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA