Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
NMR Biomed ; : e5271, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367692

RESUMEN

Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3 -) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3 - to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39417452

RESUMEN

The abnormal energy metabolism level of a tumor reduces the efficiency of chemotherapy. Metal-organic nanomaterials (MONs) with high drug loading efficiency, easy processes of synthesis, and controlled drug release have shown great potential in metabolic blocking and enhancement of tumor therapy. These metal-organic nanomedicines have been reported to modulate glycolysis or oxidative phosphorylation to provide monotherapy or combined therapies in tumorous treatments. In addition, the encapsulation or coordination of fluorescent dyes into MONs endowed them with the imaging ability of tumor metabolism. Herein, this Perspective summarizes the progress of MONs as therapeutic agents or imaging probes for application during tumor metabolic blocking or imaging, providing solid inspiration for biomedical applications of effective biomaterials. In addition, the current drawbacks of MONs for further biological applications in the future were discussed, giving stimulation of innovation and development in biomedical applications of MONs.

3.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39408832

RESUMEN

Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.


Asunto(s)
Neoplasias de la Mama , Organoides , Microambiente Tumoral , Humanos , Organoides/metabolismo , Organoides/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Técnicas de Cultivo Tridimensional de Células/métodos
4.
Diabetes Obes Metab ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402788

RESUMEN

AIMS: Roux-en-Y gastric bypass (RYGB) surgery alters postprandial glucose profiles, causing post-bariatric hypoglycaemia (PBH) in some individuals. Due to the liver's central role in glucose homeostasis, hepatic glucose handling might differ in RYGB-operated patients with PBH compared to non-operated healthy controls (HC). MATERIALS AND METHODS: We enrolled RYGB-operated adults with PBH and HCs (n = 10 each). Participants ingested 60 g of [6,6'-2H2]-glucose (d-glucose) after an overnight fast. Deuterium metabolic imaging (DMI) with interleaved 13C magnetic resonance spectroscopy was performed before and until 150 min post-d-glucose intake, with frequent blood sampling to quantify glucose enrichment and gluco-regulatory hormones until 180 min. Glucose fluxes were assessed by mathematical modelling. Outcome trajectories were described using generalized additive models. RESULTS: In RYGB subjects, the hepatic d-glucose signal increased early, followed by a decrease, whereas HCs exhibited a gradual increase and consecutive stabilization. Postprandial hepatic glycogen accumulation and the suppression of endogenous glucose production were lower in RYGB patients than in HCs, despite higher insulin exposure, indicating lower hepatic insulin sensitivity. The systemic rate of ingested d-glucose was faster in RYGB, leading to a higher, earlier plasma glucose peak and increased insulin secretion. Postprandial glucose disposal increased in RYGB patients, without between-group differences in peripheral insulin sensitivity. CONCLUSIONS: Exploiting DMI with stable isotope flux analysis, we observed distinct postprandial hepatic glucose trajectories and parameters of glucose-insulin homeostasis in RYGB patients with PBH versus HCs. Despite altered postprandial glucose kinetics and higher insulin exposure, there was no evidence of impaired hepatic glucose uptake or output predisposing to PBH in RYGB patients.

5.
J Cardiovasc Magn Reson ; : 101095, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270801

RESUMEN

BACKGROUND: Hyperpolarized [1-13C]pyruvate magnetic resonance imaging (HP MRI) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart (HF) using HP MRI. METHODS: A cross-sectional study of patients with HF and healthy controls using HP MRI. Metabolic imaging was obtained using a cardiac-gated spectral-spatial excitation with spiral read-out acquisition. The metabolite signal was analyzed for lactate, bicarbonate, and the alanine signal. Metabolite signal was normalized to the total carbon signal (TC). At the one-year follow-up, echocardiography was performed in all patients and HP MRI in two patients. RESULTS: We included six patients with ischemic heart disease (IHD), six with dilated cardiomyopathy and six healthy controls. In patients, left ventricular ejection fraction (LVEF) correlated with lactate/bicarbonate (r = -0.6, p = 0.03) and lactate/TC (r = -0.7, p = 0.01). In patients with LVEF < 30%, lactate/TC was increased (p = 0.01) and bicarbonate/TC reduced (p = 0.03). Circumferential strain correlated with metabolite ratios: lactate/bicarbonate, r = 0.87 (p = 0.0002); lactate/TC, r = 0.85 (p = 0.0005); bicarbonate/TC, r = -0.82 (p = 0.001). In patients with IHD, a strong correlation was found between baseline metabolite ratios and the change in LVEF at follow-up: lactate/bicarbonate (p = 0.001); lactate/TC (p = 0.011); and bicarbonate/TC (p = 0.012). CONCLUSIONS: This study highlighted the ability of HP MRI to detect changes in metabolism in HF. HP MRI has potential for metabolic phenotyping of patients with HF and for predicting treatment response. TRIAL REGISTRATION: EUDRACT, 2018-003533-15. Registered 4 December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.

6.
J Clin Med ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274300

RESUMEN

Background: Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) is a firmly established tool in oncology and is gaining importance in dermato-oncology. However, its use in advanced basal cell carcinoma (BCC) is limited, with only a few case reports and a single study focused on vismodegib. This study evaluates the role of 18F-FDG PET/CT in advanced BCC treated with sonidegib. Methods: We retrospectively assessed the clinical data of patients with advanced BCC who underwent 18F-FDG PET/CT between January 2022 and January 2024. Inclusion criteria included histologically confirmed BCC, FDG-avid lesions on baseline PET/CT, and a minimum follow-up of 6 months. Metabolic response was assessed using the PET Response Criteria in Solid Tumors (PERCIST). Results: Four patients with advanced BCC treated with sonidegib were included, presenting with a total of 10 hypermetabolic lesions at baseline PET/CT. The mean interval between baseline and follow-up scans was 8.7 ± 1.6 months. According to PERCIST, two patients achieved a complete metabolic response (CMR), while the other two had stable metabolic disease (SMD). Low baseline-standardized uptake values (i.e., SUVmax, SUVmean) and reduced total lesion glycolysis (TLG) were associated with CMR. No relapses were observed during follow-up. Conclusions: This study suggests that 18F-FDG PET/CT may help identify advanced BCC patients who are likely to benefit from sonidegib treatment. Further research is needed to fully explore the potential of PET/CT in this specific clinical context.

7.
Comput Methods Programs Biomed ; 256: 108375, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180914

RESUMEN

INTRODUCTION: We propose a novel approach for the non-invasive quantification of dynamic PET imaging data, focusing on the arterial input function (AIF) without the need for invasive arterial cannulation. METHODS: Our method utilizes a combination of three-dimensional depth-wise separable convolutional layers and a physically informed deep neural network to incorporatea priori knowledge about the AIF's functional form and shape, enabling precise predictions of the concentrations of [11C]PBR28 in whole blood and the free tracer in metabolite-corrected plasma. RESULTS: We found a robust linear correlation between our model's predicted AIF curves and those obtained through traditional, invasive measurements. We achieved an average cross-validated Pearson correlation of 0.86 for whole blood and 0.89 for parent plasma curves. Moreover, our method's ability to estimate the volumes of distribution across several key brain regions - without significant differences between the use of predicted versus actual AIFs in a two-tissue compartmental model - successfully captures the intrinsic variability related to sex, the binding affinity of the translocator protein (18 kDa), and age. CONCLUSIONS: These results not only validate our method's accuracy and reliability but also establish a foundation for a streamlined, non-invasive approach to dynamic PET data quantification. By offering a precise and less invasive alternative to traditional quantification methods, our technique holds significant promise for expanding the applicability of PET imaging across a wider range of tracers, thereby enhancing its utility in both clinical research and diagnostic settings.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Humanos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Adulto , Reproducibilidad de los Resultados , Persona de Mediana Edad , Piridinas , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Receptores de GABA/metabolismo
8.
BJR Open ; 6(1): tzae019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39165295

RESUMEN

Metabolic imaging in clinical practice has long relied on PET with fluorodeoxyglucose (FDG), a radioactive tracer. However, this conventional method presents inherent limitations such as exposure to ionizing radiation and potential diagnostic uncertainties, particularly in organs with heightened glucose uptake like the brain. This review underscores the transformative potential of traditional deuterium MR spectroscopy (MRS) when integrated with gradient techniques, culminating in an advanced metabolic imaging modality known as deuterium MRI (DMRI). While recent advancements in hyperpolarized MRS hold promise for metabolic analysis, their widespread clinical usage is hindered by cost constraints and the availability of hyperpolarizer devices or facilities. DMRI, also denoted as deuterium metabolic imaging (DMI), represents a pioneering, single-shot, and noninvasive paradigm that fuses conventional MRS with nonradioactive deuterium-labelled substrates. Extensively tested in animal models and patient cohorts, particularly in cases of brain tumours, DMI's standout feature lies in its seamless integration into standard clinical MRI scanners, necessitating only minor adjustments such as radiofrequency coil tuning to the deuterium frequency. DMRI emerges as a versatile tool for quantifying crucial metabolites in clinical oncology, including glucose, lactate, glutamate, glutamine, and characterizing IDH mutations. Its potential applications in this domain are broad, spanning diagnostic profiling, treatment response monitoring, and the identification of novel therapeutic targets across diverse cancer subtypes.

9.
J Magn Reson Imaging ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058248

RESUMEN

BACKGROUND: Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of 2H-labeled substrates. DMI after [6,6'-2H2]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-2H2]glucose doses on DMI brain data is not well known. PURPOSE: To investigate three different [6,6'-2H2]glucose doses for DMI in the human brain at 7 T. STUDY TYPE: Prospective. POPULATION: Six healthy participants (age: 28 ± 8 years, male/female: 3/3). FIELD STRENGTH/SEQUENCE: 7 T, 3D 2H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence. ASSESSMENT: Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-2H2]glucose on two occasions and underwent consecutive 2H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma 2H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-2H2]glucose (part-2). STATISTICAL TEST: Mean plasma 2H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain 2H-Glc and brain 2H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05. RESULTS: Between 60 and 100 minutes after ingesting [6,6'-2H2]glucose, plasma 2H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain 2H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain 2H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma 2H-Glc APE, brain 2H-Glc, and brain 2H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-2H2]glucose. DATA CONCLUSION: Brain 2H-Glucose and brain 2H-Glutamate/Glutamine showed to be [6,6'-2H2]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, 2H-Glucose and 2H-Glutamate/Glutamine signals in the brain. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

10.
mBio ; 15(8): e0072724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38975793

RESUMEN

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular parasite that infects warm-blooded vertebrates across the world. In humans, seropositivity rates of T. gondii range from 10% to 90% across communities. Despite its prevalence, few studies address how T. gondii infection changes the metabolism of host cells. In this study, we investigate how T. gondii manipulates the host cell metabolic environment by monitoring the metabolic response over time using noninvasive autofluorescence lifetime imaging of single cells, metabolite analysis, extracellular flux analysis, and reactive oxygen species (ROS) production. Autofluorescence lifetime imaging indicates that infected host cells become more oxidized and have an increased proportion of bound NAD(P)H compared to uninfected controls. Over time, infected cells also show decreases in levels of intracellular glucose and lactate, increases in oxygen consumption, and variability in ROS production. We further examined changes associated with the pre-invasion "kiss and spit" process using autofluorescence lifetime imaging, which also showed a more oxidized host cell with an increased proportion of bound NAD(P)H over 48 hours compared to uninfected controls, suggesting that metabolic changes in host cells are induced by T. gondii kiss and spit even without invasion.IMPORTANCEThis study sheds light on previously unexplored changes in host cell metabolism induced by T. gondii infection using noninvasive, label-free autofluorescence imaging. In this study, we use optical metabolic imaging (OMI) to measure the optical redox ratio (ORR) in conjunction with fluorescence lifetime imaging microscopy (FLIM) to noninvasively monitor single host cell response to T. gondii infection over 48 hours. Collectively, our results affirm the value of using autofluorescence lifetime imaging to noninvasively monitor metabolic changes in host cells over the time course of a microbial infection. Understanding this metabolic relationship between the host cell and the parasite could uncover new treatment and prevention options for T. gondii infections worldwide.


Asunto(s)
Imagen Óptica , Especies Reactivas de Oxígeno , Toxoplasma , Toxoplasma/metabolismo , Imagen Óptica/métodos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Animales , NADP/metabolismo , Oxidación-Reducción , Glucosa/metabolismo , Interacciones Huésped-Parásitos
11.
Res Sq ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38947024

RESUMEN

Purpose: (2S,4R)-4-[18F]fluoroglutamine ([18F]FGln) is a promising metabolic imaging marker in cancer. Based on the fact that major inflammatory cells are heavily dependent on glutamine metabolism like cancer cells, we explored the potential utility of [18F]FGln as a metabolic imaging marker for inflammation in two rat models: carrageenan-induced paw edema (CIPE) and collagen-induced arthritis (CIA). Procedures: The CIPE model (n = 4) was generated by injecting 200 µL of 3% carrageenan solution into the left hind paw three hours before the PET. The CIA model (n = 4) was generated by injecting 200 µg of collagen emulsion subcutaneously at the tail base 3-4 weeks before the PET. A qualitative scoring system was used to assess the severity of paw inflammation. After a CT scan, 15.7 ± 4.9 MBq of [18F]FGln was injected via the tail vein, followed by a dynamic micro-PET scan for 90 minutes under anesthesia with isoflurane. The standard uptake value of [18F]FGln was measured by placing a volume of interest in each paw. The non-injected right hind paws of the CIPE model rats served as controls for both models. The paws with CIA were pathologically examined after PET. Results: In CIPE models, uptake in the injected paw was higher compared to the non-injected paw by 52-83%. In CIA models, uptake in the paws with severe inflammation was higher than the averaged controls by 54-173%, while that with mild and no inflammation was slightly higher (33%) and lower (-7%), respectively. Combined overall, the [18F]FGln uptake in CIA showed a significant positive correlation with inflammation severity (r = 0.88, P = 0.009). The pathological findings confirmed profound inflammation in CIA. Conclusions: [18F]FGln uptake was increased in both acute and chronic inflammation, and the uptake level was significantly correlated with the severity, suggesting its potential utility as a novel metabolic imaging marker for inflammation.

12.
EJNMMI Res ; 14(1): 53, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869780

RESUMEN

BACKGROUND: Fatty acid uptake can be measured using PET and 14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). However, the relatively rapid rate of [18F]FTHA metabolism significantly affects kinetic modeling of tissue uptake. Thus, there is a need for accurate chromatographic methods to analyze the unmetabolized [18F]FTHA (parent fraction). Here we present a new radiometabolite analysis (RMA) method, with comparison to a previous method for parent fraction analysis, and its use in a test-retest clinical study under fasting and postprandial conditions. We developed a new thin-layer chromatography (TLC) RMA method for analysis of [18F]FTHA parent fraction and its radiometabolites from plasma, by testing stationary phases and eluent combinations. Next, we analyzed [18F]FTHA, its radiometabolites, and plasma radioactivity from subjects participating in a clinical study. A total of 17 obese or overweight participants were dosed with [18F]FTHA twice under fasting, and twice under postprandial conditions and plasma samples were obtained between 14 min (mean of first sample) and 72 min (mean of last sample) post-injection. Aliquots of 70 plasma samples were analyzed using both methods, enabling head-to-head comparisons. We performed test-retest and group comparisons of the parent fraction and plasma radioactivity. RESULTS: The new TLC method separated seven [18F]FTHA radiometabolite peaks, while the previous method separated three. The new method revealed at least one radiometabolite that was not previously separable from [18F]FTHA. From the plasma samples, the mean parent fraction value was on average 7.2 percentage points lower with the new method, compared to the previous method. Repeated [18F]FTHA investigations on the same subject revealed reproducible plasma SUV and parent fractions, with different kinetics between the fasted and postprandial conditions. CONCLUSIONS: The newly developed improved radio-TLC method for [18F]FTHA RMA enables accurate parent fraction correction, which is required to obtain quantitative data for modelling [18F]FTHA PET data. Our test-retest study of fasted and postprandial conditions showed robust reproducibility, and revealed clear differences in the [18F]FTHA metabolic rate under different study settings. TRIAL REGISTRATION: EudraCT No: 2020-005211-48, 04Feb2021; and Clinical Trials registry NCT05132335, 29Oct2021, URL: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05132335 .

13.
Clin Oncol (R Coll Radiol) ; 36(9): e294-e300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821722

RESUMEN

AIMS: Local failure remains the major concern in grade 4 glioma or glioblastoma (GBM). Pilot studies have shown a radiotherapy (RT) dose-response relationship in GBM. Here we present our preliminary data of RT dose escalation using 68Ga-Pentixafor PET scan. High 68Ga-pentixafor uptake in glioma cells helps in sharp demarcation between tumour and normal brain. MATERIALS AND METHODS: This phase II prospective study was conducted from 2018 to 2020. Thirty, biopsy-proven cases of grade 4 glioma were included. All patients underwent post-operative MRI of the brain and 68Ga-Pentixafor PET scan. RT was planned in 2-phases. Phase-1 GTV (GTV1) comprised of T2/flair abnormality, PET-avid disease and post-op cavity. A margin of 2cm was given to GTV-1 to create phase-1 CTV (CTV1), which was further expanded to 0.5cm to generate phase-1 PTV (PTV1). A radiation dose of 46Gy/23fr was prescribed to PTV-1. Phase-2 GTV (GTV2) consisted of CT/MRI contrast-enhancing lesion, PET avid disease and post-op cavity. A margin of 0.5 cm was given to GTV2 to create phase-2 CTV (CTV2) which was expanded to 0.5 cm to create phase-2 PTV (PTV2). RT dose of 14 Gy/7 fr was prescribed to PTV2. PET avid disease was delineated as GTV PET and a margin of 3mm was given to generate PTV-PET which received escalated RT dose of 21 Gy/7fr by simultaneous integrated boost (SIB) in phase 2 (Total dose to PTV PET = 67 Gy/30 fr). All patients received concurrent and adjuvant temozolomide. The data was prospectively maintained in Microsoft Excel sheet. SPSS v 23 was used for statistical analysis. The primary endpoints were estimation of the overall survival (OS) and progression-free survival (PFS), and secondary endpoint was to measure the incidence of radiation necrosis. Categorical variables were reported as frequency and percentage and quantitative variables were reported as median and range. RESULTS: Data from thirty patients were analysed. A median OS of 23 months was observed with estimated 1, 2 and 3 years OS of 90%, 40% and 17.8% respectively. A significant association of OS was seen with the extent of surgery (p = 0.04) and kernofsky performance status (p = 0.007). No patient developed significant radiation necrosis. CONCLUSIONS: The index study did not show any survival benefit from dose escalation RT. However, all of the patients tolerated the treatment well and none of them developed radiation necrosis. Considering the small sample size as a limitation of the index study, the role of 68Ga-pentixafor PET scan for radiation dose escalation should be further explored. CLINICAL TRIAL NUMBER: CTRI/2019/05/019146.


Asunto(s)
Neoplasias Encefálicas , Glioma , Tomografía de Emisión de Positrones , Humanos , Estudios Prospectivos , Masculino , Persona de Mediana Edad , Femenino , Glioma/radioterapia , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Adulto , Tomografía de Emisión de Positrones/métodos , Anciano , Dosificación Radioterapéutica , Radioisótopos de Galio , Clasificación del Tumor
14.
J Imaging Inform Med ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710970

RESUMEN

Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth, it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper, we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies, and technical developments of this imaging technique.

15.
J Magn Reson Imaging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721871

RESUMEN

BACKGROUND: One of the main features of several metabolic disorders is dysregulation of hepatic glucose and lipid metabolism. Deuterium metabolic imaging (DMI) allows for assessing the uptake and breakdown of 2H-labeled substrates, giving specific insight into nutrient processing in healthy and diseased organs. Thus, DMI could be a useful approach for analyzing the differences in liver metabolism of healthy and diseased subjects to gain a deeper understanding of the alterations related to metabolic disorders. PURPOSE: Evaluating the feasibility of DMI as a tool for the assessment of metabolic differences in rodents with healthy and fatty livers (FLs). STUDY TYPE: Animal Model. POPULATION: 18 male Sprague Dawley rats on standard (SD, n = 9, healthy) and high-fat diet (HFD, n = 9, FL disease). FIELD STRENGTH/SEQUENCE: Phase-encoded 1D pulse-acquire sequence and anatomy co-registered phase-encoded 3D pulse-acquire chemical shift imaging for 2H at 9.4T. ASSESSMENT: Localized and nonlocalized liver spectroscopy was applied at eight time points over 104 minutes post injection. The obtained spectra were preprocessed and quantified using jMRUI (v7.0) and the resulting amplitudes translated to absolute concentration (mM) according to the 2H natural abundance water peak. STATISTICAL TESTS: Two-way repeated measures ANOVA were employed to assess between-group differences, with statistical significance at P < 0.05. RESULTS: DMI measurements demonstrated no significant difference (P = 0.98) in the uptake of [6,6'-2H2]glucose between healthy and impaired animals (AUCSD = 1966.0 ± 151.5 mM - minutes vs. AUCHFD = 2027.0 ± 167.6 mM·minutes). In the diseased group, the intrahepatic uptake of palmitic acid d-31 was higher (AUCHFD = 57.4 ± 17.0 mM·minutes, AUCSD = 33.3 ± 10.5 mM·minutes), but without statistical significance owing to substantial in-group variation (P = 0.73). DATA CONCLUSION: DMI revealed higher concentrations of palmitic acid in rats with FL disease and no difference in hepatic glucose concentration between healthy and impaired animals. Thus, DMI appears to be a useful tool for evaluating metabolism in rodents with FL disease. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

16.
ArXiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38764595

RESUMEN

Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM Attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies and technical developments of this imaging technique.

17.
Biol Reprod ; 110(6): 1157-1174, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38647415

RESUMEN

Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.


Asunto(s)
Imagen Óptica , Humanos , Imagen Óptica/métodos , Animales , Desarrollo Embrionario/fisiología , Embrión de Mamíferos/diagnóstico por imagen , Embrión de Mamíferos/fisiología , Femenino , Embarazo
19.
Neuroimaging Clin N Am ; 34(2): 271-280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604711

RESUMEN

Acute stroke imaging plays a vital and time-sensitive role in therapeutic decision-making. Current clinical workflows widely use computed tomography (CT) and magnetic resonance (MR) techniques including CT and MR perfusion to estimate the volume of ischemic penumbra at risk for infarction without acute intervention. The use of imaging techniques aimed toward evaluating the metabolic derangements underlying a developing infarct may provide additional information for differentiating the penumbra from benign oligemia and infarct core. The authors review several modalities of metabolic imaging including PET, hydrogen and oxygen spectroscopy, sodium MRI, and pH-weighted MRI.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/patología , Oxígeno , Accidente Cerebrovascular/terapia , Imagen por Resonancia Magnética , Análisis Espectral , Tomografía de Emisión de Positrones/métodos , Infarto , Concentración de Iones de Hidrógeno
20.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647048

RESUMEN

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.


Asunto(s)
Encéfalo , Deuterio , Glucosa , Humanos , Glucosa/metabolismo , Adulto , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto Joven , Espectroscopía de Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA