Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.324
Filtrar
1.
Trends Plant Sci ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972784

RESUMEN

Beneficial microbes induce resistance in plants (MIR), imposing both lethal and sublethal effects on herbivorous insects. We argue that herbivores surviving MIR carry metabolic and immunological imprints of MIR with cascading effects across food webs. We propose that incorporating such cascading effects will strongly enhance the current MIR research framework.

2.
Ecol Evol ; 14(7): e11705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38975267

RESUMEN

Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.

3.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972970

RESUMEN

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Asunto(s)
Consorcios Microbianos , Poríferos , Simbiosis , Transcriptoma , Simbiosis/genética , Poríferos/microbiología , Poríferos/genética , Animales , Consorcios Microbianos/genética , Perfilación de la Expresión Génica , Mar Mediterráneo
4.
Ecol Evol ; 14(7): e11458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979008

RESUMEN

In root nodule symbioses (RNS) between nitrogen (N)-fixing bacteria and plants, bacterial symbionts cycle between nodule-inhabiting and soil-inhabiting niches that exert differential selection pressures on bacterial traits. Little is known about how the resulting evolutionary tension between host plants and symbiotic bacteria structures naturally occurring bacterial assemblages in soils. We used DNA cloning to examine soil-dwelling assemblages of the actinorhizal symbiont Frankia in sites with long-term stable assemblages in Alnus incana ssp. tenuifolia nodules. We compared: (1) phylogenetic diversity of Frankia in soil versus nodules, (2) change in Frankia assemblages in soil versus nodules in response to environmental variation: both across succession, and in response to long-term fertilization with N and phosphorus, and (3) soil assemblages in the presence and absence of host plants. Phylogenetic diversity was much greater in soil-dwelling than nodule-dwelling assemblages and fell into two large clades not previously observed. The presence of host plants was associated with enhanced representation of genotypes specific to A. tenuifolia, and decreased representation of genotypes specific to a second Alnus species. The relative proportion of symbiotic sequence groups across a primary chronosequence was similar in both soil and nodule assemblages. Contrary to expectations, both N and P enhanced symbiotic genotypes relative to non-symbiotic ones. Our results provide a rare set of field observations against which predictions from theoretical and experimental work in the evolutionary ecology of RNS can be compared.

5.
Plant Commun ; : 101012, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956873

RESUMEN

High light stress in subtropical and tropical regions strongly limits agricultural production due to photo-oxidative damage, decreased growth and yield. Here, we investigated whether beneficial microbes can protect plants under high light stress. We found that Enterobacter sp. SA187 (SA187) supports Arabidopsis thaliana growth under high light stress by reducing the accumulation of reactive oxygen species (ROS) and maintaining photosynthesis. When subjected to high light stress, SA187 triggers dynamic changes in Arabidopsis gene expression related to fortified iron metabolism and redox regulation thereby enhancing the plant anti-oxidative glutathione/glutaredoxin redox system. Genetic analysis shows that SA187-enhanced iron and sulfur metabolism are coordinated by ethylene signaling. In summary, beneficial microbes could be an effective and inexpensive means for enhancing high light stress tolerance in plants.

6.
Sci Total Environ ; : 174406, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964395

RESUMEN

The remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation. Findings indicate that microorganisms can reduce the uranium concentration in groundwater subject to NISL uranium mining to its normal level. After 120 days of bioaugmentation, the uranium concentration in the contaminated groundwater fell to 0.36 mg/L, achieving a remediation efficiency of 91.26 %. Compared with biostimulation, bioaugmentation shortened the remediation timeframe by 30 to 60 days while maintaining roughly the same remediation efficiency. For groundwater remediation using indigenous microbial inoculants, initial uranium concentration and low temperatures (below 15 °C) emerge as the dominant factors influencing the bioremediation performance and duration. In settings with high carbonate concentrations, bioremediation involved the coupling of multiple processes including bioreduction, biotransformation, biomineralization, and biosorption, with bioreduction assuming a predominant role. Post-bioremediation, the relative abundances of reducing microbes Desulfosporosinus and Sulfurospirillum in groundwater increased significantly by 10.56 % and 6.91 %, respectively, offering a sustainable, stable biological foundation for further bioremediation of groundwater.

7.
Chemosphere ; 362: 142744, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950749

RESUMEN

Plant-microbe remediation technique is considered as a promising technology in removal of organic pollutants and its remediation efficiency is largely affected by a variety of surrounding environmental factors. Humic acid (HA) is the complex organic substance ubiquitous in environment, which characterized by its surfactant-like micelle microstructure and various reaction activity. In our study, a plant-microbe association with high p-tert-Butylphenol (PTBP) degradation potential constructed by Spirodela polyrhiza and Sphingobium phenoxybenzoativorans Tas13 has been used, and the influence of HA on the PTBP degradation efficiency of S. polyrhiza-Tas13 association was investigated. The result showed that the presence of HA greatly improved PTBP removal efficiency of S. polyrhiza-Tas13. The reason accounted for this may be due to the presence of HA promoted bacterial cell propagation, altered bacterial cell wall permeability, increased catechol 2,3-dioxygenase (C23O) enzyme activity of strain Tas13, rather than increasing the colonization ability of strain Tas13 on to the root surface. This study will greatly facilitate the application of aquatic plant-microbe association in environmental remediation.

8.
Nat Prod Bioprospect ; 14(1): 40, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955942

RESUMEN

Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.

9.
Geobiology ; 22(4): e12610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979799

RESUMEN

This study investigates the paleobiological significance of pyritic stromatolites from the 3.48 billion-year-old Dresser Formation, Pilbara Craton. By combining paleoenvironmental analyses with observations from well-preserved stromatolites in newly obtained drill cores, the research reveals stratiform and columnar to domal pyritic structures with wavy to wrinkly laminations and crest thickening, hosted within facies variably influenced by syn-depositional hydrothermal activity. The columnar and domal stromatolites occur in strata with clearly distinguishable primary depositional textures. Mineralogical variability and fine-scale interference textures between the microbialites and the enclosing sediment highlight interplays between microbial and depositional processes. The stromatolites consist of organomineralization - nanoporous pyrite and microspherulitic barite - hosting significant thermally mature organic matter (OM). This includes filamentous organic microstructures encased within nanoporous pyrite, resembling the extracellular polymeric substance (EPS) of microbes. These findings imply biogenicity and support the activity of microbial life in a volcano-sedimentary environment with hydrothermal activity and evaporative cycles. Coupled changes in stromatolite morphology and host facies suggest growth in diverse niches, from dynamic, hydrothermally influenced shallow-water environments to restricted brine pools strongly enriched in SO 4 2 - $$ {\mathrm{SO}}_4^{2-} $$ from seawater and hydrothermal activity. These observations, along with S stable isotope data indicating influence by S metabolisms, and accumulations of biologically significant metals and metalloids (Ni and As) within the microbialites, help constrain microbial processes. Columnar to domal stromatolites in dynamic, hydrothermally influenced shallow water deposits likely formed by microbial communities dominated by phototrophs. Stratiform pyritic structures within barite-rich strata may reflect the prevalence of chemotrophs near hydrothermal venting, where hydrothermal activity and microbial processes influenced barite precipitation. Rapid pyrite precipitation, a putative taphonomic process for preserving microbial remnants, is attributed to microbial sulfate reduction and reduced S sourced from hydrothermal activity. In conclusion, this research underscores the biogenicity of the Dresser stromatolites and advances our understanding of microbial ecosystems in Earth's early history.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Sulfuros/química , Sulfuros/metabolismo , Fósiles , Hierro/metabolismo , Hierro/química
10.
mSphere ; : e0036024, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980072

RESUMEN

Characterizing microbial communities at high resolution and with absolute quantification is crucial to unravel the complexity and diversity of microbial ecosystems. This can be achieved with PCR assays, which enable highly selective detection and absolute quantification of microbial DNA. However, a major challenge that has hindered PCR applications in microbiome research is the design of highly specific primer sets that exclusively amplify intended targets. Here, we introduce Phylogenetically Unique Primers in python (PUPpy), a fully automated pipeline to design microbe- and group-specific primers within a given microbial community. PUPpy can be executed from a user-friendly graphical user interface, or two simple terminal commands, and it only requires coding sequence files of the community members as input. PUPpy-designed primers enable the detection of individual microbes and quantification of absolute microbial abundance in defined communities below the strain level. We experimentally evaluated the performance of PUPpy-designed primers using two bacterial communities as benchmarks. Each community comprises 10 members, exhibiting a range of genetic similarities that spanned from different phyla to substrains. PUPpy-designed primers also enable the detection of groups of bacteria in an undefined community, such as the detection of a gut bacterial family in a complex stool microbiota sample. Taxon-specific primers designed with PUPpy showed 100% specificity to their intended targets, without unintended amplification, in each community tested. Lastly, we show the absolute quantification of microbial abundance using PUPpy-designed primers in droplet digital PCR, benchmarked against 16S rRNA and shotgun sequencing. Our data shows that PUPpy-designed microbe-specific primers can be used to quantify substrain-level absolute counts, providing more resolved and accurate quantification in defined communities than short-read 16S rRNA and shotgun sequencing. IMPORTANCE: Profiling microbial communities at high resolution and with absolute quantification is essential to uncover hidden ecological interactions within microbial ecosystems. Nevertheless, achieving resolved and quantitative investigations has been elusive due to methodological limitations in distinguishing and quantifying highly related microbes. Here, we describe Phylogenetically Unique Primers in python (PUPpy), an automated computational pipeline to design taxon-specific primers within defined microbial communities. Taxon-specific primers can be used to selectively detect and quantify individual microbes and larger taxa within a microbial community. PUPpy achieves substrain-level specificity without the need for computationally intensive databases and prioritizes user-friendliness by enabling both terminal and graphical user interface applications. Altogether, PUPpy enables fast, inexpensive, and highly accurate perspectives into microbial ecosystems, supporting the characterization of bacterial communities in both in vitro and complex microbiota settings.

11.
Curr Opin Chem Biol ; 81: 102493, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971129

RESUMEN

Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing biosystems, thereby propelling the field of chemical biology towards sustainable chemical production.

12.
Ecotoxicol Environ Saf ; 282: 116691, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981391

RESUMEN

Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.

13.
Microb Ecol ; 87(1): 90, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958675

RESUMEN

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.


Asunto(s)
Abies , Bacterias , Endófitos , Raíces de Plantas , ARN Ribosómico 16S , Plantones , Plantones/microbiología , Plantones/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Endófitos/fisiología , Endófitos/genética , ARN Ribosómico 16S/genética , Abies/microbiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Biodiversidad , Microbiota , ADN Bacteriano/genética
14.
Int J Legal Med ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985198

RESUMEN

As two kinds of increasingly popular pets, the saliva of cat or canine is most likely to be left at the crime scene compared with the common types of body fluids in forensics. Accurately identifying the species of saliva samples found at the crime scene involving pets will help the investigators find available testing materials, reduce the consumption of reagents and save the investigative time of the case. Therefore, it is necessary to explore the characteristics and differences of saliva microbiomes of cat, canine and human. In this study, 16S rRNA gene amplicon sequencing technology was used to reveal microbial communities of saliva samples of healthy human, cat, and canine. Alpha diversity analyses indicated that canine saliva demonstrated the highest microbial diversity, followed by cat saliva, whereas human saliva microbial diversity was the lowest. The saliva samples of the three species all had their own unique microbial community compositions, and the dominant phyla of canine and cat salivas were Proteobacteria and Bacteroidete, while the dominant phyla of human saliva were Firmicutes and Proteobacteria. There was no significant statistical difference in the salivary microbiota obtained by the two collection methods (cotton swab and liquid saliva). The gender of cats and canines might have no effect on the salivary microbiota, but the different breeds had an impact on their saliva microbiomes. Principal coordinates analysis, non-metric multidimensional scaling analysis and random forest analysis all indicated significant differences in microbial community structures among the three species, allowing inference on the species sources of saliva samples by microbiome method. Differential microbial biomarkers for the salivas of three species were screened out using a variety of bioinformatics analyses, and the results demonstrated that Prevotella melaninogenica, Veillonella parvula, and Haemophilus parainfluenzae could be used as species-specific microbial biomarkers of human saliva. The detections of human species-specific microbes provide a potential method for determining human saliva.

15.
J Basic Microbiol ; : e2400100, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899609

RESUMEN

Sustainable agriculture represents the responsible utilization of natural resources while safeguarding the well-being of the natural environment. It encompasses the objectives of preserving the environment, fostering economic growth, and promoting socioeconomic equality. To achieve sustainable development for humanity, it is imperative to prioritize sustainable agriculture. One significant approach to achieving this transition is the extensive utilization of microbes, which play a crucial role due to the genetic reliance of plants on the beneficial functions provided by symbiotic microbes. This review focuses on the significance of rhizospheric microbial communities, also known as the rhizomicrobiome (RM). It is a complex community of microorganisms that live in the rhizosphere and influence the plant's growth and health. It provides its host plant with various benefits related to plant growth, including biocontrol, biofertilization, phytostimulation, rhizoremediation, stress resistance, and other advantageous properties. Yet, the mechanisms by which the RM contributes to sustainable agriculture remain largely unknown. Investigating this microbial population presents a significant opportunity to advance toward sustainable agriculture. Hence, this study aims to provide an overview of the diversity and applications of RM in sustainable agriculture practices. Lately, there has been growing momentum in various areas related to rhizobiome research and its application in agriculture. This includes rhizosphere engineering, synthetic microbiome application, agent-based modeling of the rhizobiome, and metagenomic studies. So, developing bioformulations of these beneficial microorganisms that support plant growth could serve as a promising solution for future strategies aimed at achieving a new green revolution.

16.
Fish Shellfish Immunol ; 151: 109707, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885802

RESUMEN

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.

17.
Front Immunol ; 15: 1401320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835769

RESUMEN

Host-microbe interactions are complex and ever-changing, especially during infections, which can significantly impact human physiology in both health and disease by influencing metabolic and immune functions. Infections caused by pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of global mortality. Microbes have evolved various immune evasion strategies to survive within their hosts, which presents a multifaceted challenge for detection. Intracellular microbes, in particular, target specific cell types for survival and replication and are influenced by factors such as functional roles, nutrient availability, immune evasion, and replication opportunities. Identifying intracellular microbes can be difficult because of the limitations of traditional culture-based methods. However, advancements in integrated host microbiome single-cell genomics and transcriptomics provide a promising basis for personalized treatment strategies. Understanding host-microbiota interactions at the cellular level may elucidate disease mechanisms and microbial pathogenesis, leading to targeted therapies. This article focuses on how intracellular microbes reside in specific cell types, modulating functions through persistence strategies to evade host immunity and prolong colonization. An improved understanding of the persistent intracellular microbe-induced differential disease outcomes can enhance diagnostics, therapeutics, and preventive measures.


Asunto(s)
Genómica , Análisis de la Célula Individual , Humanos , Genómica/métodos , Animales , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/genética , Evasión Inmune , Microbiota/inmunología , Bacterias/genética , Bacterias/inmunología , Índice de Severidad de la Enfermedad
19.
Microbiome Res Rep ; 3(2): 18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841408

RESUMEN

Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.

20.
Microbiome Res Rep ; 3(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841412

RESUMEN

Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA