Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Small ; 20(29): e2400238, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38385800

RESUMEN

The performance of Stimulated Emission Depletion (STED) microscopy depends critically on the fluorescent probe. Ultrasmall Au nanoclusters (Au NCs) exhibit large Stokes shift, and good stimulated emission response, which are potentially useful for STED imaging. However, Au NCs are polydispersed in size, sensitive to the surrounding environment, and difficult to control surface functional group stoichiometry, which results in reduced density and high heterogeneity in the labeling of biological structures. Here, this limitation is overcome by developing a method to encapsulate ultrasmall Au NCs with DNA cages, which yielded monodispersed, and monofunctionalized Au NCs that are long-term stable. Moreover, the DNA-caging also greatly improved the fluorescence quantum yield and photostability of Au NCs. In STED imaging, the DNA-caged Au NCs yielded ≈40 nm spatial resolution and are able to resolve microtubule line shapes with good labeling density and homogeneity. In contrast, without caging, the Au NCs-DNA conjugates only achieved ≈55 nm resolution and yielded spotted, poorly resolved microtubule structures, due to the presence of aggregates. Overall, a method is developed to achieve precise surface functionalization and greatly improve the monodispersity, stability, as well as optical properties of Au NCs, providing a promising class of fluorescent probes for STED imaging.


Asunto(s)
ADN , Oro , Nanopartículas del Metal , Oro/química , ADN/química , Nanopartículas del Metal/química , Microscopía Fluorescente/métodos , Humanos
2.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38231987

RESUMEN

Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures of which determine the end functional groups of the polymer chain. It is therefore of interest to monofunctionalize the polymers via CTA moiety, for bioactive functionality conjugation and in the meantime maintain the precisely controlled morphology of the copolymers and the related property. In this work, a newly designed CTA 5-(2-(tert-butoxycarbonylamino) ethylamino)-2-cyano-5-oxopentan-2-yl benzodithioate (t-Boc CPDB) was synthesized and used for the RAFT polymerization of PGMA45-PHPMA120. Subsequently, PGMA45-PHPMA120 copolymers with primary amine, maleimide, and reduced L-glutathione (a tripeptide) monofunctionalized terminals were synthesized via deprotection and conjugation reactions. These monofunctionalized copolymers maintain worm-like morphology and thermo-responsive property in aqueous solution (10% w/v), as confirmed by the transmission electron microscopy (TEM) images, and the observation of the phase transition behavior in between 4 °C and room temperature (~20 °C), respectively. Summarily, a range of thermo-responsive monofunctionalized PGMA45-PHPMA120 diblock copolymer worms were successfully synthesized, which are expected to offer potential biomedical applications, such as in polymer therapeutics, drug delivery, and diagnostics.

3.
Angew Chem Int Ed Engl ; 60(18): 10359-10365, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33596326

RESUMEN

We report binding studies of an octa-pyridinium super aryl-extended calix[4]pyrrole receptor with neutral difunctional aliphatic guests in water. The guests have terminal isonitrile and formamide groups, and the complexes display an inclusion binding geometry and 1:1 stoichiometry. Using 1 H NMR titrations and ITC experiments, we characterized the dissimilar thermodynamic and kinetic properties of the complexes. The bis-isonitriles possess independent reacting groups, however, in the presence of 1 equiv of the receptor the hydrolysis reaction produces mixtures of non-statistical composition and a significant decrease in reaction rates. The selectivity for the mono-formamide product is specially enhanced in the case of the bis-isonitrile having a spacer with five methylene groups. The analysis of the kinetic data suggests that the observed modifications in reaction rates and selectivity are related to the formation of highly stable inclusion complexes in which the isonitrile is hidden from bulk water molecules. The concentration of the reacting substrates in the bulk solution is substantially reduced by binding to the receptor. In turn, the hydrolysis rates of the isonitrile groups for the bound substrates are slower than in the bulk solution. The receptor acts as both a sequestering and supramolecular protecting group.

4.
Adv Sci (Weinh) ; 7(3): 1902477, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042566

RESUMEN

Controlling the selective one-to-one conjugation of RNA with nanoparticles is vital for future applications of RNA nanotechnology. Here, the monofunctionalization of a gold nanoparticle (AuNP) with a single copy of RNA is developed for ultrasensitive microRNA-155 quantification using electrochemical surface-enhanced Raman spectroscopy (EC-SERS). A single AuNP is conjugated with one copy of the packaging RNA (pRNA) three-way junction (RNA 3WJ). pRNA 3WJ containing one strand of the 3WJ is connected to a Sephadex G100 aptamer and a biotin group at each arm (SEPapt/3WJ/Bio) which is then immobilized to the Sephadex G100 resin. The resulting complex is connected to streptavidin-coated AuNP (STV/AuNP). Next, the STV/AuNP-Bio/3WJa is purified and reassembled with another 3WJ to form a single-labeled 3WJ/AuNP. Later, the monoconjugate is immobilized onto the AuNP-electrodeposited indium tin oxide coated substrate for detecting microRNA-155 based on EC-SERS. Application of an optimum potential of +0.2 V results in extraordinary amplification (≈7 times) of methylene blue (reporter) SERS signal compared to the normal SERS signal. As a result, a highly sensitive detection of 60 × 10-18 m microRNA-155 in 1 h in serum based on monoconjugated AuNP/RNA is achieved. Thus, the monofunctionalization of RNA onto nanoparticle can provide a new methodology for biosensor construction and diverse RNA nanotechnology development.

5.
ACS Appl Mater Interfaces ; 7(20): 11024-31, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25943563

RESUMEN

Designed rational assembly of proteins promises novel properties and functionalities as well as new insights into the nature of life. De novo design of artificial protein nanostructures has been achieved using protein subunits or peptides as building blocks. However, controlled assembly of protein nanostructures into higher-order discrete nanoarchitectures, rather than infinite arrays or aggregates, remains a challenge due to the complex or symmetric surface chemistry of protein nanostructures. Here we develop a facile strategy to control the hierarchical assembly of protein nanocages into discrete nanoarchitectures with gold nanoparticles (AuNPs) as scaffolds via rationally designing their interfacial interaction. The protein nanocage is monofunctionalized with a polyhistidine tag (Histag) on the external surface through a mixed assembly strategy, while AuNPs are modified with Ni(2+)-NTA chelates, so that the protein nanocage can controllably assemble onto the AuNPs via the Histag-Ni(2+) affinity. Discrete protein nanoarchitectures with tunable composition can be generated by stoichiometric control over the ratio of protein nanocage to AuNP or change of AuNP size. The methodology described here is extendable to other protein nanostructures and chemically synthesized nanomaterials, and can be borrowed by synthetic biology for biomacromolecule manipulation.


Asunto(s)
Cristalización/métodos , Oro/química , Nanopartículas del Metal/química , Impresión Molecular/métodos , Nanopartículas/química , Proteínas/química , Adsorción , Ensayo de Materiales , Nanopartículas/ultraestructura , Unión Proteica , Proteínas/ultraestructura , Propiedades de Superficie
6.
Adv Healthc Mater ; 4(6): 911-7, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25650337

RESUMEN

A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.


Asunto(s)
Oro/química , Microdominios de Membrana/metabolismo , Nanopartículas del Metal , Péptidos/metabolismo , Esfingolípidos/metabolismo , Secuencia de Aminoácidos , Microdominios de Membrana/química , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA