Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Front Immunol ; 15: 1444100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381000

RESUMEN

Background: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis. Methods: Fibrotic liver tissue and serum from distinct patient groups were analyzed using nCounter MAX, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay. A MASH mouse model was constructed to evaluate the effectiveness of OATD-01, a chitinase inhibitor. Macrophage profiling was performed using single-nuclei RNA sequencing and flow cytometry. Results: CHIT1 expression in fibrotic liver tissues was significantly correlated with the extent of liver fibrosis, macrophages, and inflammation. Single-nuclei RNA sequencing demonstrated a notable increase in macrophages numbers, particularly of lipid-associated macrophages, in MASH mice. Treatment with OATD-01 reduced non-alcoholic fatty liver disease activity score and Sirius red-positive area. Additionally, OATD-01-treated mice had lower CHIT1, F4/80, and α-smooth muscle actin positivity, as well as significantly lower levels of inflammatory markers, pro-fibrotic genes, and matrix remodeling-related mRNAs than vehicle-treated mice. Although the population of F4/80+CD11b+ intrahepatic mononuclear phagocytes remained unchanged, their infiltration and activation (CHIT1+MerTK+) significantly decreased in OATD-01-treated mice, compared with that observed in vehicle-treated mice. Conclusions: Our study underscores the pivotal role of CHIT1 in MASH. The observed significant improvement in inflammation and hepatic fibrosis, particularly at higher doses of the CHIT1 inhibitor, strongly suggests the potential of CHIT1 as a therapeutic target in MASH accompanied by progressive liver fibrosis.


Asunto(s)
Quitinasas , Modelos Animales de Enfermedad , Macrófagos , Animales , Humanos , Ratones , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Quitinasas/metabolismo , Quitinasas/antagonistas & inhibidores , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/etiología , Femenino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Persona de Mediana Edad , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos/efectos de los fármacos
2.
Biomed Mater ; 19(6)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39312951

RESUMEN

Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadein vitroandin vivoon the size of blocking liposomes in the 100-500 nm range. Saturation of RAW 264.7 macrophage uptake was observed for phosphatidylcholine/cholesterol liposomes larger than 200 nmin vitro. In mice, liposomes of all sizes exhibited a blocking effect on liver macrophages, prolonging the circulation of subsequently administrated magnetic nanoparticles in the bloodstream, reducing their liver uptake, and increasing accumulation in the spleen and lungs. Importantly, these effects became more pronounced with the increase of liposome size. Optimization of the size of the blocking liposomes holds the potential to enhance drug delivery and improve cancer therapy.


Asunto(s)
Liposomas , Nanopartículas , Tamaño de la Partícula , Animales , Liposomas/química , Ratones , Células RAW 264.7 , Nanopartículas/química , Sistema Mononuclear Fagocítico/metabolismo , Macrófagos/metabolismo , Distribución Tisular , Sistemas de Liberación de Medicamentos , Hígado/metabolismo , Colesterol/química , Bazo/metabolismo , Fosfatidilcolinas/química
3.
Colloids Surf B Biointerfaces ; 244: 114176, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39217726

RESUMEN

Annonaceous acetogenins (ACGs) have great potential in the treatment of gliomas, but are extremely insoluble and difficult for delivery in vivo. Poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO) is an amphiphilic polymer and can reduce the clearance of nanoparticles by mononuclear phagocyte system. To explore an efficient and safe nanomedicine for glioma, ACGs-loaded nanomicelles (ACGs/EB-NCs) was constructed using PEO-PBO as a carrier, and the effect of PEO-PBO content on the targeting and anti-glioma activity were also compared. ACGs/EB5-NCs, ACGs/EB10-NCs and ACGs/EB20-NCs, the three nanomicellels prepared with different ACGs/EB feeding ratios, had average particle sizes of 148.8±0.5 nm, 32.7±4.1 nm, and 27.1±0.3 nm, respectively. The three ACGs/EB-NCs were spherical in shape, with drug loading content close to the theoretical drug loading content, encapsulation efficiency greater than 97 %, and good stability in physiological media. The cumulative release rates of ACGs/EB5-NCs, ACGs/EB10-NCs and ACGs/EB20-NCs were 78.2 %, 63.4 %, and 56.3 % within 216 hours, respectively. The inhibitory effects of three ACGs/EB-NCs on U87 MG cells were similar and stronger than free ACGs (P<0.05), with half inhibitory concentration of 0.17, 0.18, and 0.16 ng/mL (P>0.05), respectively. In U87 MG tumor­bearing mice, ACGs/EB5-NC, ACGs/EB10-NCs and ACGs/EB20-NCs showed a similar tumor inhibition rate of 61.1±5.9 %, 56.2±8.6 % and 64.3±9.4 % (P>0.05), with good safety. Three ACGs/EB-NCs exhibited excellent liver escape ability and tumor targeting ability, with the tumor targeting index greater than 1.5. Three ACGs/EB-NCs were successfully prepared with strong anti-glioma activity and tumor targeting properties, which are expected to provide new options for the clinical treatment of gliomas. The content of PEO-PBO in micelles did not have a significant effect on the tumor targeting and anti-glioma activity of ACGs/EB-NCs.


Asunto(s)
Acetogeninas , Glioma , Micelas , Nanopartículas , Polietilenglicoles , Glioma/tratamiento farmacológico , Glioma/patología , Animales , Acetogeninas/química , Acetogeninas/farmacología , Polietilenglicoles/química , Humanos , Ratones , Nanopartículas/química , Tamaño de la Partícula , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Butileno Glicoles/química , Butileno Glicoles/farmacología , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Supervivencia Celular/efectos de los fármacos , Ratones Desnudos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales
4.
mBio ; 15(10): e0214024, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39207098

RESUMEN

Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE: Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.


Asunto(s)
Cromatina , Macrófagos , FN-kappa B , Proteínas Protozoarias , Transducción de Señal , Toxoplasma , Proteínas Quinasas p38 Activadas por Mitógenos , Toxoplasma/genética , Toxoplasma/fisiología , Animales , Macrófagos/parasitología , Macrófagos/inmunología , Ratones , FN-kappa B/metabolismo , FN-kappa B/genética , Humanos , Cromatina/metabolismo , Cromatina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Toxoplasmosis/parasitología , Toxoplasmosis/metabolismo , Toxoplasmosis/inmunología , Ratones Endogámicos C57BL , Interacciones Huésped-Parásitos , Quimiotaxis
5.
Cells ; 13(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39195266

RESUMEN

The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.


Asunto(s)
Inmunidad Celular , Premio Nobel , Fagocitos , Animales , Humanos , Células Dendríticas/inmunología , Historia del Siglo XX , Historia del Siglo XXI , Inmunidad Innata , Macrófagos/inmunología , Sistema Mononuclear Fagocítico/inmunología , Premio Nobel/historia , Fagocitos/inmunología
6.
Assay Drug Dev Technol ; 22(5): 246-264, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38828531

RESUMEN

Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.


Asunto(s)
Lípidos , Nanopartículas , Polietilenglicoles , Polietilenglicoles/química , Nanopartículas/química , Humanos , Lípidos/química , Sistemas de Liberación de Medicamentos , Animales
7.
Adv Funct Mater ; 34(8)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38828467

RESUMEN

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

8.
Allergy ; 79(8): 2157-2172, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924546

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS: Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS: H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS: H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.


Asunto(s)
Modelos Animales de Enfermedad , Monocitos , Infecciones por Virus Sincitial Respiratorio , Carga Viral , Animales , Infecciones por Virus Sincitial Respiratorio/inmunología , Ratones , Monocitos/inmunología , Nematospiroides dubius/inmunología , Pulmón/inmunología , Pulmón/virología , Infecciones por Strongylida/inmunología , Virus Sincitiales Respiratorios/inmunología , Interferón Tipo I/metabolismo
9.
Cell Rep ; 43(6): 114352, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870011

RESUMEN

Addressing the mononuclear phagocyte system (MPS) and macrophage M1/M2 activation is important in diagnosing hematological disorders and inflammatory pathologies and designing therapeutic tools. CSF1R is a reliable marker to identify all circulating MPS cells and tissue macrophages in humans using a single surface protein. CSF1R permits the quantification and isolation of monocyte and dendritic cell (DC) subsets in conjunction with CD14, CD16, and CD1c and is stable across the lifespan and sexes in the absence of overt pathology. Beyond cell detection, measuring M1/M2 activation in humans poses challenges due to response heterogeneity, transient signaling, and multiple regulation steps for transcripts and proteins. MPS cells respond in a conserved manner to M1/M2 pathways such as interleukin-4 (IL-4), steroids, interferon-γ (IFNγ), and lipopolysaccharide (LPS), for which we propose an ad hoc modular gene expression tool. Signature analysis highlights macrophage activation mosaicism in experimental samples, an emerging concept that points to mixed macrophage activation states in pathology.


Asunto(s)
Activación de Macrófagos , Macrófagos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Interferón gamma/metabolismo , Lipopolisacáridos/farmacología , Femenino , Mosaicismo , Masculino , Monocitos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Receptores de IgG/metabolismo , Receptores de IgG/genética , Antígenos CD1/metabolismo , Antígenos CD1/genética , Sistema Mononuclear Fagocítico/metabolismo , Glicoproteínas , Receptor de Factor Estimulante de Colonias de Macrófagos
10.
Blood Res ; 59(1): 18, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713245

RESUMEN

Histiocytic and dendritic cell neoplasms comprise diverse tumors originating from the mononuclear phagocytic system, which includes monocytes, macrophages, and dendritic cells. The 5th edition of the World Health Organization (WHO) classification updating the categorization of these tumors, reflecting a deeper understanding of their pathogenesis.In this updated classification system, tumors are categorized as Langerhans cell and other dendritic cell neoplasms, histiocyte/macrophage neoplasms, and plasmacytoid dendritic cell neoplasms. Follicular dendritic cell neoplasms are classified as mesenchymal dendritic cell neoplasms within the stroma-derived neoplasms of lymphoid tissues.Each subtype of histiocytic and dendritic cell neoplasms exhibits distinct morphological characteristics. They also show a characteristic immunophenotypic profile marked by various markers such as CD1a, CD207/langerin, S100, CD68, CD163, CD4, CD123, CD21, CD23, CD35, and ALK, and hematolymphoid markers such as CD45 and CD43. In situ hybridization for EBV-encoded small RNA (EBER) identifies a particular subtype. Immunoprofiling plays a critical role in determining the cell of origin and identifying the specific subtype of tumors. There are frequent genomic alterations in these neoplasms, especially in the mitogen-activated protein kinase pathway, including BRAF (notably BRAF V600E), MAP2K1, KRAS, and NRAS mutations, and ALK gene translocation.This review aims to offer a comprehensive and updated overview of histiocytic and dendritic cell neoplasms, focusing on their ontogeny, morphological aspects, immunophenotypic profiles, and molecular genetics. This comprehensive approach is essential for accurately differentiating and classifying neoplasms according to the updated WHO classification.

11.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370679

RESUMEN

Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.

12.
J Cancer Res Clin Oncol ; 150(2): 37, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279056

RESUMEN

BACKGROUND: Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS: In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS: We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS: Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Multiómica , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Sistema Mononuclear Fagocítico , Inmunoterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Pronóstico , Microambiente Tumoral
13.
Regen Biomater ; 11: rbad108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223291

RESUMEN

Nanoparticle-mediated drug delivery has emerged as a highly promising and effective therapeutic approach for addressing myocardial infarction. However, clinical translation tends to be a failure due to low cardiac retention as well as liver and spleen entrapment in previous therapies. Herein, we report a two-step exosome delivery system, which precludes internalization by the mononuclear phagocyte system before the delivery of therapeutic cardiac targeting exosomes (ExoCTP). Importantly, curcumin released by ExoCTP diminishes reactive oxygen species over-accumulation in ischemic myocardium, as well as serum levels of lactate dehydrogenase, malonyldialdehyde, superoxide dismutase and glutathione, indicating better antioxidant capacity than free curcumin. Finally, our strategy was proven to greatly potentiate the delivery and therapeutic efficacy of curcumin without systemic toxicity. Taken together, our smart exosome-mediated drug delivery strategy can serve either as therapeutics alone or in combination with other drugs for effective heart targeting and subsequent wound healing.

14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 773-782, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37927019

RESUMEN

Objective To explore the cell subsets and characteristics related to the prognosis of osteosarcoma by analyzing the cellular composition of tumor tissue samples from different osteosarcoma patients.Methods The single-cell sequencing data and bulk sequencing data of different osteosarcoma patients were downloaded.We extracted the information of cell samples for dimensionality reduction,annotation,and cell function analysis,so as to identify the cell subsets and clarify the cell characteristics related to the prognosis of osteosarcoma.The development trajectory of macrophages with prognostic significance was analyzed,and the prognostic model of osteosarcoma was established based on the differentially expressed genes of macrophage differentiation.Results The cellular composition presented heterogeneity in the patients with osteosarcoma.The infiltration of mononuclear phagocytes in osteosarcoma had prognostic significance(P=0.003).Four macrophage subsets were associated with prognosis,and their signature transcription factors included RUNX3(+),ETS1(+),HOXD11(+),ZNF281(+),and PRRX1(+).Prog_Macro2 and Prog_Macro4 were located at the end of the developmental trajectory,and the prognostic ability of macrophage subsets increased with the progression of osteosarcoma.The prognostic model established based on the differentially expressed genes involved in macrophage differentiation can distinguish the survival rate of osteosarcoma patients with different risks(P<0.001).Conclusion Macrophage subsets are closely related to the prognosis of osteosarcoma and can be used as the key target cells for the immunotherapy of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Pronóstico , Osteosarcoma/genética , Inmunoterapia , Macrófagos , Factores de Transcripción , Neoplasias Óseas/genética , Proteínas de Homeodominio , Proteínas Represoras
15.
Adv Sci (Weinh) ; 10(34): e2303298, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37867225

RESUMEN

Mononuclear phagocytes (MPs) are vital components of host immune defenses against cancer. However, tumor-infiltrating MPs often present tolerogenic and pro-tumorigenic phenotypes via metabolic switching triggered by excessive lipid accumulation in solid tumors. Inspired by viral infection-mediated MP modulation, here enveloped immunometabolic nanoparticles (immeNPs) are designed to co-deliver a viral RNA analog and a fatty acid oxidation regulator for synergistic reshaping of intratumoral MPs. These immeNPs are camouflaged with cancer cell membranes for tumor homing and opsonized with anti-CD163 antibodies for specific MP recognition and uptake. It is found that internalized immeNPs coordinate lipid metabolic reprogramming with innate immune stimulation, inducing M2-to-M1 macrophage repolarization and tolerogenic-to-immunogenic dendritic cell differentiation for cytotoxic T cell infiltration. The authors further demonstrate that the use of immeNPs confers susceptibility to anti-PD-1 therapy in immune checkpoint blockade-resistant breast and ovarian tumors, and thereby provide a promising strategy to expand the potential of conventional immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Linfocitos T Citotóxicos , Neoplasias/terapia , Anticuerpos , Macrófagos , Lípidos
16.
Front Immunol ; 14: 1192941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529043

RESUMEN

Although the "multiple hits" theory is a widely accepted pathogenesis in IgA nephropathy (IgAN), increasing evidence suggests that the mononuclear/macrophage system plays important roles in the progression of IgAN; however, the exact mechanism is unclear. In the present study, we explored 1,067 patients in 15 studies and found that the number of macrophages per glomerulus was positively related with the degree of hematuria, and the macrophages in the glomeruli were mainly related to mesangial proliferation (M) in renal biopsy. In the tubulointerstitium, macrophages were significantly paralleled to tubulointerstitial α-SMA and NF-kB expression, tubulointerstitial lesion, tubule atrophy/interstitial fibrosis (T), and segmental glomerulosclerosis (S). In the glomeruli and tubulointerstitium, M1 accounted for 85.41% in the M classification according to the Oxford MEST-C, while in the blood, M1 accounted for 100%, and the patients with low CD89+ monocyte mean fluorescence intensity displayed more severe pathological characteristics (S1 and T1-2) and clinical symptoms. M1 (CD80+) macrophages were associated with proinflammation in the acute phase; however, M2 (CD163+) macrophages participated in tissue repair and remodeling, which correlated with chronic inflammation. In the glomeruli, M2 macrophages activated glomerular matrix expansion by secreting cytokines such as IL-10 and tumor necrosis factor-ß (TGF-ß), and M0 (CD68+) macrophages stimulated glomerular hypercellularity. In the tubulointerstitium, M2 macrophages played pivotal roles in renal fibrosis and sclerosis. It is assumed that macrophages acted as antigen-presenting cells to activate T cells and released diverse cytokines to stimulate an inflammatory response. Macrophages infiltrating glomeruli destroy the integrity of podocytes through the mesangio-podocytic-tubular crosstalk as well as the injury of the tubule.


Asunto(s)
Glomerulonefritis por IGA , Glomeruloesclerosis Focal y Segmentaria , Humanos , Glomerulonefritis por IGA/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Pronóstico , Macrófagos/metabolismo , Citocinas
17.
Mol Pharm ; 20(9): 4468-4477, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37548597

RESUMEN

Dynamin II (dynII) plays a significant role in the internalization pathways of endocytic cells, by allowing membrane invaginations to "bud off". An important class of dynII inhibitors that are used clinically are phenothiazines, such as prochlorperazine (PCZ). PCZ is an antipsychotic drug but is also currently in clinical trials at higher concentrations as an adjuvant in cancer patients that increases the efficacy of monoclonal antibodies at high intravenous doses. It is unknown, however, whether high-dose dynII inhibitors have the potential to alter the pharmacokinetics of co-administered chemotherapeutic nanomedicines that are largely cleared via the mononuclear phagocyte system. This work therefore sought to investigate the impact of clinically relevant concentrations of phenothiazines, PCZ and thioridazine, on in vitro liposome endocytosis and in vivo liposome pharmacokinetics after PCZ infusion in rats. The uptake of fluorescently labeled PEGylated liposomes into differentiated and undifferentiated THP-1 and RAW246.7 cells, and primary human peripheral white blood cells, was investigated via flow cytometry after co-incubation with dynII inhibitors. The IV pharmacokinetics of PEGylated liposomes were also investigated in rats after a 20 min infusion with PCZ. Phenothiazines and dyngo4a reduced the uptake of PEGylated liposomes by THP-1 and RAW264.7 cells in a concentration-dependent manner in vitro. However, dynII inhibitors did not alter the mean uptake of liposomes by human peripheral white blood cells, but endocytic white cells from some donors exhibited sensitivity to phenothiazine exposure. When a clinically relevant dose of PCZ was co-administered with PEGylated liposomal doxorubicin (Caelyx/Doxil) in rats, the pharmacokinetics and biodistribution of liposomes were unaltered. These data suggest that while clinically relevant doses of dynII inhibitors can inhibit the uptake of liposomes by endocytic cells in vitro, they are unlikely to significantly affect the pharmacokinetics of long-circulating, co-administered liposomes.


Asunto(s)
Dinamina II , Liposomas , Ratas , Humanos , Animales , Distribución Tisular , Doxorrubicina , Polietilenglicoles , Fenotiazinas , Proclorperazina
18.
Front Cell Dev Biol ; 11: 1211833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476156

RESUMEN

At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.

20.
Ann Anat ; 249: 152107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207851

RESUMEN

BACKGROUND: The "mononuclear phagocyte system" (MPS) refers to dispersed mononuclear monocytes and macrophages and is used to distinguish them from polymorphonuclear cells. The term "histiocyte" indicates large cells with voluminous granulated cytoplasm, sometimes containing engulfed particles, recognized as fully differentiated end cells of the MPS. Dendritic cells (DC) represent another diversified population whose inclusion in the MPS is still debated. The diverse cells of the MPS cannot all be characterized by single antigen markers or unique functions expressed at all stages of cell differentiation or activation. Nevertheless, in a diagnostic setting, their reliable identification plays a major role when a specific therapy must be established. Understanding the heterogeneity among MPS cell populations is indeed relevant to define different therapeutic approaches that can range from the use of antibiotics to immunomodulatory agents. For this reason, we attempted to establish a protocol to reliably identify the proportion of macrophages within the mononuclear phagocyte system in a tissue and/or in a given inflammatory population. METHODS: the Tafuri method was used in different double immunofluorescence protocols using an anti-Iba-1, anti-MAC387, and anti-CD11b-CD68-CD163-CD14-CD16 antibody. RESULTS AND DISCUSSION: in normal canine skin the anti-Iba-1 antibody stained an epidermal cell population (i.e. Langerhans cells) and scattered cells within the dermal compartment. MAC387 was unable to stain cells containing Leishmania amastigotes in leishmaniasis-diagnosed samples as the anti-CD11b-CD68-CD163-CD14-CD16 antibody did. By using a combination of staining protocols to differentiate macrophages within the whole histiocytic infiltrate we validated the use of a cocktail of rabbit monoclonal antibodies raised against CD11b, CD68, CD163, CD14, CD16 to stain skin macrophages.


Asunto(s)
Macrófagos , Monocitos , Animales , Perros , Diferenciación Celular , Anticuerpos Monoclonales , Técnica del Anticuerpo Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA