Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Epilepsia ; 65(8): 2238-2247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829313

RESUMEN

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Epilepsia/genética , Neuroimagen/métodos
2.
ACS Synth Biol ; 13(4): 1205-1214, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38579163

RESUMEN

This paper presents Maud, a command-line application that implements Bayesian statistical inference for kinetic models of biochemical metabolic reaction networks. Maud takes into account quantitative information from omics experiments and background knowledge as well as structural information about kinetic mechanisms, regulatory interactions, and enzyme knockouts. Our paper reviews the existing options in this area, presents a case study illustrating how Maud can be used to analyze a metabolic network, and explains the biological, statistical, and computational design decisions underpinning Maud.


Asunto(s)
Redes Reguladoras de Genes , Teorema de Bayes , Cinética
3.
Animals (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254442

RESUMEN

Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.

4.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745438

RESUMEN

Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multi-modal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.

5.
J Agric Food Chem ; 71(43): 16391-16401, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857602

RESUMEN

Huanglongbing (HLB) is a highly destructive disease that inflicts significant economic losses on the citrus industry worldwide but with no cure available. However, microbiomes formulated by citrus plants may serve as disease antagonists, increasing the level of HLB tolerance. This study established an integrated analysis of untargeted metabolomics and microbiomics data for different citrus cultivars, providing critical insights into the interactions between plant metabolism and plant-associated bacteria in the development of HLB. Machine learning models were applied to screen important metabolites and bacteria in multiple citrus materials, and the selected metabolites were then analyzed to identify essential pathways enriched in the plant and to correlate with the selected bacteria. Results demonstrated that the regulation of plant pathways, especially ABC transporters and ubiquinone and other terpene-ubiquinone biosynthesis pathways, could affect the microbial community structure, indicating potential solutions for controlling HLB by modulating bacteria in citrus plants or breeding tolerant citrus cultivars.


Asunto(s)
Citrus , Rhizobiaceae , Citrus/metabolismo , Multiómica , Ubiquinona/metabolismo , Fitomejoramiento , Bacterias/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética
6.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37889117

RESUMEN

Artificial intelligence (AI) approaches in cancer analysis typically utilize a 'one-size-fits-all' methodology characterizing average patient responses. This manner neglects the diverse conditions in the pancancer and cancer subtypes of individual patients, resulting in suboptimal outcomes in diagnosis and treatment. To overcome this limitation, we shift from a blanket application of statistics to a focus on the explicit recognition of patient-specific abnormalities. Our objective is to use multiomics data to empower clinicians with personalized molecular descriptions that allow for customized diagnosis and interventions. Here, we propose a highly trustworthy multiomics learning (HTML) framework that employs multiomics self-adaptive dynamic learning to process each sample with data-dependent architectures and computational flows, ensuring personalized and trustworthy patient-centering of cancer diagnosis and prognosis. Extensive testing on a 33-type pancancer dataset and 12 cancer subtype datasets underscored the superior performance of HTML compared with static-architecture-based methods. Our findings also highlighting the potential of HTML in elucidating complex biological pathogenesis and paving the way for improved patient-specific care in cancer treatment.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Multiómica , Neoplasias/diagnóstico , Neoplasias/genética , Aprendizaje
7.
Drug Discov Today ; 28(11): 103797, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806386

RESUMEN

Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Antibacterianos/farmacología
8.
Neurobiol Dis ; 186: 106274, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648037

RESUMEN

Elevated alpha-synuclein (SNCA) gene expression is associated with transcriptional deregulation and increased risk of Parkinson's disease, which may be partially ameliorated by environmental enrichment. At the molecular level, there is emerging evidence that excess alpha-synuclein protein (aSyn) impacts the epigenome through direct and/or indirect mechanisms. However, the extents to which the effects of both aSyn and the environment converge at the epigenome and whether epigenetic alterations underpin the preventive effects of environmental factors on transcription remain to be elucidated. Here, we profiled five DNA and histone modifications in the hippocampus of wild-type and transgenic mice overexpressing human SNCA. Mice of each genotype were housed under either standard conditions or in an enriched environment (EE) for 12 months. SNCA overexpression induced hippocampal CpG hydroxymethylation and histone H3K27 acetylation changes that associated with genotype more than environment. Excess aSyn was also associated with genotype- and environment-dependent changes in non-CpG (CpH) DNA methylation and H3K4 methylation. These H3K4 methylation changes included loci where the EE ameliorated the impacts of the transgene as well as loci resistant to the effects of environmental enrichment in transgenic mice. In addition, select H3K4 monomethylation alterations were associated with changes in mRNA expression. Our results suggested an environment-dependent impact of excess aSyn on some functionally relevant parts of the epigenome, and will ultimately enhance our understanding of the molecular etiology of Parkinson's disease and other synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/genética , Epigenoma , Expresión Génica , Hipocampo , Ratones Transgénicos , Enfermedad de Parkinson/genética
9.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37497720

RESUMEN

Vertical federated learning has gained popularity as a means of enabling collaboration and information sharing between different entities while maintaining data privacy and security. This approach has potential applications in disease healthcare, cancer prognosis prediction, and other industries where data privacy is a major concern. Although using multi-omics data for cancer prognosis prediction provides more information for treatment selection, collecting different types of omics data can be challenging due to their production in various medical institutions. Data owners must comply with strict data protection regulations such as European Union (EU) General Data Protection Regulation. To share patient data across multiple institutions, privacy and security issues must be addressed. Therefore, we propose an adaptive optimized vertical federated-learning-based framework adaptive optimized vertical federated learning for heterogeneous multi-omics data integration (AFEI) to integrate multi-omics data collected from multiple institutions for cancer prognosis prediction. AFEI enables participating parties to build an accurate joint evaluation model for learning more information related to cancer patients from different perspectives, based on the distributed and encrypted multi-omics features shared by multiple institutions. The experimental results demonstrate that AFEI achieves higher prediction accuracy (6.5% on average) than using single omics data by utilizing the encrypted multi-omics data from different institutions, and it performs almost as well as prognosis prediction by directly integrating multi-omics data. Overall, AFEI can be seen as an efficient solution for breaking down barriers to multi-institutional collaboration and promoting the development of cancer prognosis prediction.


Asunto(s)
Aprendizaje , Multiómica , Humanos , Difusión de la Información , Privacidad
10.
Comput Biol Med ; 158: 106865, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030268

RESUMEN

The study of cellular decision-making can be approached comprehensively using multimodal single-cell omics technology. Recent advances in multimodal single-cell technology have enabled simultaneous profiling of more than one modality from the same cell, providing more significant insights into cell characteristics. However, learning the joint representation of multimodal single-cell data is challenging due to batch effects. Here we present a novel method, scJVAE (single-cell Joint Variational AutoEncoder), for batch effect removal and joint representation of multimodal single-cell data. The scJVAE integrates and learns joint embedding of paired scRNA-seq and scATAC-seq data modalities. We evaluate and demonstrate the ability of scJVAE to remove batch effects using various datasets with paired gene expression and open chromatin. We also consider scJVAE for downstream analysis, such as lower dimensional representation, cell-type clustering, and time and memory requirement. We find scJVAE a robust and scalable method outperforming existing state-of-the-art batch effect removal and integration methods.


Asunto(s)
Aprendizaje , Análisis por Conglomerados , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Análisis de la Célula Individual
11.
OMICS ; 27(1): 24-33, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602810

RESUMEN

Multiomics data integration is one of the leading frontiers of complex disease research and integrative biology. The advances in single-cell sequencing technologies offer yet another crucial dimension in multiomics research. The single-cell studies enable the study and integration of multiomics data simultaneously in the same cell. We report in this study multiomics data integration in single-cell resolution using Bayesian networks (BNs) in a case study of hepatocellular carcinoma (HCC). A BN encodes the conditional dependencies/independencies of variables using a graphical model with an accompanying joint probability. RNA-seq and Reduced Representation Bisulfite Sequencing data were analyzed separately, and copy number variations were estimated by the hidden Markov model method. Several BN models were constructed to reveal omics' causal and associational relationships. These methods were subjected to a validation study using an independent data set. We show the heterogeneity of the multiple cellular layers of HCC at single-cell omics resolution by identifying best-fitted BN models of 295 genes. We also provide novel insights into the multiomics mechanistic relationships in the human lymphocyte antigen class I genes in HCC. To the best of our knowledge, this is the first study to focus on integrating omics data using a machine learning algorithm, BNs, at the single-cell resolution using a case study of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Multiómica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Teorema de Bayes , Variaciones en el Número de Copia de ADN/genética
12.
Epigenomics ; 14(18): 1073-1088, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36200265

RESUMEN

Aims: To identify a novel subtype with DNA driver methylation-transcriptomic multiomics and predict prognosis and therapy response in serous ovarian cancer (SOC). Methods: SOC cohorts with both mRNA and methylation were collected, and DNA driver methylation (DNAme) was identified with the MithSig method. A novel prognostic subtype was developed by integrating the information on DNAme and prognosis-regulated DNAme-associated mRNA by similarity network fusion. Results: 43 overlapped DNAme were identified in three independent cohorts. SOC patients were categorized into three distinct subtypes by integrated multiomics. There were differences in prognosis, tumor microenvironment and response to therapy among the subtypes. Conclusion: This study identified 43 DNAmes and proposes a novel subtype toward personalized chemotherapy and immunotherapy for SOC patients based on multiomics.


Ovarian cancer is a highly malignant gynecological disease. The high heterogeneity of ovarian cancer may contribute to chemotherapy resistance and immunotherapy insensitivity. Gene alterations and aberrant methylation occur in the process of tumor initiation and progression, but not all alterations are drivers of tumor development. In this study, we aim to find the DNA driver methylation (DNAme) that plays a decisive role in ovarian cancer development and obtain a novel multiomics molecular subtype related to DNAme integrated by multiple omics information. We identified 43 overlapping DNAme in three cohorts. The multiomics subtype associated with DNAme could predict ovarian cancer prognosis and treatment response.


Asunto(s)
Neoplasias Ováricas , Carcinoma Epitelial de Ovario/genética , ADN , Metilación de ADN , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Pronóstico , ARN Mensajero , Microambiente Tumoral
13.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36094092

RESUMEN

The identification of cancer subtypes can help researchers understand hidden genomic mechanisms, enhance diagnostic accuracy and improve clinical treatments. With the development of high-throughput techniques, researchers can access large amounts of data from multiple sources. Because of the high dimensionality and complexity of multiomics and clinical data, research into the integration of multiomics data is needed, and developing effective tools for such purposes remains a challenge for researchers. In this work, we proposed an entirely unsupervised clustering method without harnessing any prior knowledge (MODEC). We used manifold optimization and deep-learning techniques to integrate multiomics data for the identification of cancer subtypes and the analysis of significant clinical variables. Since there is nonlinearity in the gene-level datasets, we used manifold optimization methodology to extract essential information from the original omics data to obtain a low-dimensional latent subspace. Then, MODEC uses a deep learning-based clustering module to iteratively define cluster centroids and assign cluster labels to each sample by minimizing the Kullback-Leibler divergence loss. MODEC was applied to six public cancer datasets from The Cancer Genome Atlas database and outperformed eight competing methods in terms of the accuracy and reliability of the subtyping results. MODEC was extremely competitive in the identification of survival patterns and significant clinical features, which could help doctors monitor disease progression and provide more suitable treatment strategies.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Reproducibilidad de los Resultados , Análisis por Conglomerados , Genómica/métodos , Neoplasias/genética
14.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34864875

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.


Asunto(s)
COVID-19 , Genómica , Pandemias , SARS-CoV-2 , Biología de Sistemas , COVID-19/epidemiología , COVID-19/genética , COVID-19/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
15.
Clin Transl Med ; 11(6): e458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185408

RESUMEN

BACKGROUND: While single-omics analyses on human atherosclerotic plaque have been very useful to map stage- or disease-related differences in expression, they only partly capture the array of changes in this tissue and suffer from scale-intrinsic limitations. In order to better identify processes associated with intraplaque hemorrhage and plaque instability, we therefore combined multiple omics into an integrated model. METHODS: In this study, we compared protein and gene makeup of low- versus high-risk atherosclerotic lesion segments from carotid endarterectomy patients, as judged from the absence or presence of intraplaque hemorrhage, respectively. Transcriptomic, proteomic, and peptidomic data of this plaque cohort were aggregated and analyzed by DIABLO, an integrative multivariate classification and feature selection method. RESULTS: We identified a protein-gene associated multiomics model able to segregate stable, nonhemorrhaged from vulnerable, hemorrhaged lesions at high predictive performance (AUC >0.95). The dominant component of this model correlated with αSMA- PDGFRα+ fibroblast-like cell content (p = 2.4E-05) and Arg1+ macrophage content (p = 2.2E-04) and was driven by serum response factor (SRF), possibly in a megakaryoblastic leukemia-1/2 (MKL1/2) dependent manner. Gene set overrepresentation analysis on the selected key features of this model pointed to a clear cardiovascular disease signature, with overrepresentation of extracellular matrix synthesis and organization, focal adhesion, and cholesterol metabolism terms, suggestive of the model's relevance for the plaque vulnerability. Finally, we were able to corroborate the predictive power of the selected features in several independent mRNA and proteomic plaque cohorts. CONCLUSIONS: In conclusion, our integrative omics study has identified an intraplaque hemorrhage-associated cardiovascular signature that provides excellent stratification of low- from high-risk carotid artery plaques in several independent cohorts. Further study revealed suppression of an SRF-regulated disease network, controlling lesion stability, in vulnerable plaque, which can serve as a scaffold for the design of targeted intervention in plaque destabilization.


Asunto(s)
Aterosclerosis/patología , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Péptidos/metabolismo , Proteoma/metabolismo , Factor de Respuesta Sérica/metabolismo , Transcriptoma , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Péptidos/análisis , Pronóstico , Proteoma/análisis , Factor de Respuesta Sérica/genética
16.
Mol Syst Biol ; 17(6): e10108, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34057817

RESUMEN

RNA hybridization-based spatial transcriptomics provides unparalleled detection sensitivity. However, inaccuracies in segmentation of image volumes into cells cause misassignment of mRNAs which is a major source of errors. Here, we develop JSTA, a computational framework for joint cell segmentation and cell type annotation that utilizes prior knowledge of cell type-specific gene expression. Simulation results show that leveraging existing cell type taxonomy increases RNA assignment accuracy by more than 45%. Using JSTA, we were able to classify cells in the mouse hippocampus into 133 (sub)types revealing the spatial organization of CA1, CA3, and Sst neuron subtypes. Analysis of within cell subtype spatial differential gene expression of 80 candidate genes identified 63 with statistically significant spatial differential gene expression across 61 (sub)types. Overall, our work demonstrates that known cell type expression patterns can be leveraged to improve the accuracy of RNA hybridization-based spatial transcriptomics while providing highly granular cell (sub)type information. The large number of newly discovered spatial gene expression patterns substantiates the need for accurate spatial transcriptomic measurements that can provide information beyond cell (sub)type labels.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Simulación por Computador , Ratones , Neuronas , ARN Mensajero , Transcriptoma/genética
17.
J Proteome Res ; 20(2): 1397-1404, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417772

RESUMEN

Data from untargeted metabolomics studies employing nuclear magnetic resonance (NMR) spectroscopy oftentimes contain negative values. These negative values hamper data processing and analysis algorithms and prevent the use of such data in multiomics integration settings. New methods to deal with such negative values are thus an urgent need in the metabolomics community. This study presents affine transformation of negative values (ATNV), a novel algorithm for replacement of negative values in NMR data sets. ATNV was implemented in the R package mrbin, which features interactive menus for user-friendly application and is available for free for various operating systems within the free R statistical programming language. The novel algorithms were tested on a set of human urinary NMR spectra and were able to successfully identify relevant metabolites.


Asunto(s)
Metabolómica , Programas Informáticos , Algoritmos , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
18.
Proc Natl Acad Sci U S A ; 117(46): 29013-29024, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144501

RESUMEN

Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.


Asunto(s)
Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Epigénesis Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Teorema de Bayes , Estudios de Cohortes , Metilación de ADN , Diabetes Mellitus/genética , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Genómica , Genotipo , Humanos , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
19.
J Genet Genomics ; 47(10): 595-609, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33423960

RESUMEN

Genome-scale studies focusing on molecular profiling of cancers across tissue types have revealed a plethora of aberrations across the genomic, transcriptomic, and epigenomic scales. The significant molecular heterogeneity across individual tumors even within the same tissue context complicates decoding the key etiologic mechanisms of this disease. Furthermore, it is increasingly likely that biologic mechanisms underlying the pathobiology of cancer involve multiple molecular entities interacting across functional scales. This has motivated the development of computational approaches that integrate molecular measurements with prior biological knowledge in increasingly intricate ways to enable the discovery of driver genomic aberrations across cancers. Here, we review diverse methodological approaches that have powered significant advances in our understanding of the genomic underpinnings of cancer at the cohort and at the individual tumor scales. We outline the key advances and challenges in the computational discovery of cancer mechanisms while motivating the development of systems biology approaches to comprehensively decode the biologic drivers of this complex disease.


Asunto(s)
Carcinogénesis/genética , Biología Computacional , Neoplasias/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Genómica , Humanos , Neoplasias/patología
20.
Genes (Basel) ; 9(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223528

RESUMEN

It is estimated that 30% of all genes in the mammalian cells are regulated by microRNA (miRNAs). The most relevant miRNAs in a cellular context are not necessarily those with the greatest change in expression levels between healthy and diseased tissue. Differentially expressed (DE) miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have a greater influence in determining phenotypic outcomes and are more important in a global biological context than miRNAs that modulate just a few mRNA transcripts. Here, we describe the development of a tool, "miRmapper", which identifies the most dominant miRNAs in a miRNA⁻mRNA network and recognizes similarities between miRNAs based on commonly regulated mRNAs. Using a list of miRNA⁻target gene interactions and a list of DE transcripts, miRmapper provides several outputs: (1) an adjacency matrix that is used to calculate miRNA similarity utilizing the Jaccard distance; (2) a dendrogram and (3) an identity heatmap displaying miRNA clusters based on their effect on mRNA expression; (4) a miRNA impact table and (5) a barplot that provides a visual illustration of this impact. We tested this tool using nonmetastatic and metastatic bladder cancer cell lines and demonstrated that the most relevant miRNAs in a cellular context are not necessarily those with the greatest fold change. Additionally, by exploiting the Jaccard distance, we unraveled novel cooperative interactions between miRNAs from independent families in regulating common target mRNAs; i.e., five of the top 10 miRNAs act in synergy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA