Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.859
Filtrar
1.
Microb Pathog ; 194: 106839, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103126

RESUMEN

Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.

2.
Neurosurg Rev ; 47(1): 412, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117984

RESUMEN

INTRODUCTION: The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS: Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS: Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION: In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Isocitrato Deshidrogenasa , Mutación , Humanos , Astrocitoma/genética , Astrocitoma/diagnóstico por imagen , Astrocitoma/patología , Masculino , Femenino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Isocitrato Deshidrogenasa/genética , Persona de Mediana Edad , Adulto , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Anciano , Imagen por Resonancia Magnética/métodos , Purina-Nucleósido Fosforilasa/genética , Biomarcadores de Tumor/genética , Adulto Joven
3.
Mol Carcinog ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115446

RESUMEN

The p53 tumor suppressor is inactivated by mutations in about 50% of tumors. Rescuing the transcriptional function of mutant p53 has potential therapeutic benefits. Approximately 15% of p53 mutants are temperature sensitive (TS) and regain maximal activity at 32°C. Proof of concept study showed that induction of 32°C hypothermia in mice restored TS mutant p53 activity and inhibited tumor growth. However, 32°C is the lower limit of therapeutic hypothermia procedures for humans. Higher temperatures are preferable but result in suboptimal TS p53 activation. Recently, arsenic trioxide (ATO) was shown to rescue the conformation of p53 structural mutants by stabilizing the DNA binding domain. We examined the responses of 17 frequently observed p53 TS mutants to functional rescue by temperature shift and ATO. The results showed that ATO only rescued mild p53 TS mutants with high basal activity at 37°C. Mild TS mutants showed a common feature of regaining significant activity at the semi-permissive temperature of 35°C and could be further stimulated by ATO at 35°C. TS p53 rescue by ATO was antagonized by the cellular redox mechanism and was rapidly reversible. Inhibition of glutathione (GSH) biosynthesis enhanced ATO rescue efficiency and sustained p53 activity after ATO washout. The results suggest that mild TS p53 mutants are uniquely responsive to functional rescue by ATO due to small thermostability deficits and inherent potential to regain active conformation. Combining mild hypothermia and ATO may provide an effective and safe procedure for targeting tumors with p53 TS mutations.

4.
ACS Sens ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088458

RESUMEN

ß-Thalassemia is a prevalent type of severe inherited chronic anemia, primarily identified in developing countries. The identification of single nucleotide polymorphisms (SNPs) plays a vital role in the early diagnosis of genetic diseases. Here, we reported the development of an amplification-free fiber optic nanogold-linked sorbent assay method using a fiber optic particle plasmon resonance (FOPPR) biosensor for rapid and ultrasensitive detection of SNPs. Herein, MutS protein was selected as the biorecognition capture probe and immobilized on the sensing region to capture the target mutant DNA, which was hybridized with a single-base mismatched single-stranded DNA labeled by a gold nanoparticle (AuNP). The AuNP acts as a signaling agent to be detected by the FOPPR biosensor when it is bound on the fiber core surface. The method effectively differentiates mismatched double-stranded DNA by MutS protein from perfectly matched/complementary dsDNA. It exhibits an impressively low detection limit for the detection of SNPs at approximately 10-16 M using low-cost sensor chips and devices. By determination of the ratio of mutant DNA to normal DNA in cell-free genomic DNA from blood samples, this method is promising for diagnosing ß-thalassemia in fetuses without invasive testing techniques.

5.
Cancer Manag Res ; 16: 933-939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099762

RESUMEN

The treatment landscape for advanced and metastatic melanoma has drastically changed in recent years, with the advent of novel therapeutic options such as immune checkpoint inhibitors and targeted therapies offering remarkable efficacy and significantly improved patient outcomes compared to traditional approaches. Approximately 50% of melanomas harbor activating BRAF mutations, with over 90% resulting in BRAF V600E. Tumors treated with BRAF inhibitor monotherapy have a high rate of developing resistance within six months. Combination therapy with MEK inhibitors helped to mitigate this treatment resistance and led to improved outcomes. Due to the up-regulation of PD-1/PD-L1 receptors in tumors treated with BRAF/MEK inhibitor therapy, further studies included a third combination agent, anti-PD-1/PD-L1 inhibitors. This triple combination therapy may have superior efficacy and a manageable safety profile when compared with single or double agent therapy regimens.


Effective treatment of advanced and metastatic melanoma can be challenging. Newer treatment methods for patients with BRAF-mutated tumors include a combination of drugs with different complementary mechanisms. These drugs include BRAF-inhibitors, MEK-inhibitors, and PD-1/PD-L1 inhibitors. When these three medications are used in combination, patients may have better response rates and survival outcomes, when compared to using just one or two of these medications together. Toxicity rates are higher with a triple-medication regimen, so careful patient selection is important to consider.

6.
Evol Lett ; 8(4): 587-599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100229

RESUMEN

One of the longstanding puzzles of antimicrobial resistance is why the frequency of resistance persists at intermediate levels. Theoretical explanations for the lack of fixation of resistance include cryptic costs of resistance or negative frequency-dependence but are seldom explored experimentally. ß-lactamases, which detoxify penicillin-related antibiotics, have well-characterized frequency-dependent dynamics driven by cheating and cooperation. However, bacterial physiology determines whether ß-lactamases are cooperative, and we know little about the sociality or fitness of ß-lactamase producers in infections. Moreover, media-based experiments constrain how we measure fitness and ignore important parameters such as infectivity and transmission among hosts. Here, we investigated the fitness effects of broad-spectrum AmpC ß-lactamases in Enterobacter cloacae in broth, biofilms, and gut infections in a model insect. We quantified frequency- and dose-dependent fitness using cefotaxime, a third-generation cephalosporin. We predicted that infection dynamics would be similar to those observed in biofilms, with social protection extending over a wide dose range. We found evidence for the sociality of ß-lactamases in all contexts with negative frequency-dependent selection, ensuring the persistence of wild-type bacteria, although cooperation was less prevalent in biofilms, contrary to predictions. While competitive fitness in gut infections and broth had similar dynamics, incorporating infectivity into measurements of fitness in infections significantly affected conclusions. Resistant bacteria had reduced infectivity, which limited the fitness benefits of resistance to infections challenged with low antibiotic doses and low initial frequencies of resistance. The fitness of resistant bacteria in more physiologically tolerant states (in biofilms, in infections) could be constrained by the presence of wild-type bacteria, high antibiotic doses, and limited availability of ß-lactamases. One conclusion is that increased tolerance of ß-lactams does not necessarily increase selection pressure for resistance. Overall, both cryptic fitness costs and frequency dependence curtailed the fitness benefits of resistance in this study.

7.
Front Immunol ; 15: 1425466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100672

RESUMEN

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods: The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results: SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion: Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Humanos , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Proteína C Asociada a Surfactante Pulmonar/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Mutación , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Apolipoproteínas E/genética , Masculino , Inflamación/inmunología , Progresión de la Enfermedad , Macrófagos/inmunología , Macrófagos/metabolismo , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Femenino , Monocitos/inmunología , Monocitos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-39102164

RESUMEN

PURPOSE: While cancer phenotypes in carriers of a single mutant allele in most major cancer susceptibility genes are well-established, there is a paucity of data on the phenotype of carriers of two pathogenic variants-double heterozygotes (DH) or homozygous carriers. Here, we describe the phenotype of carriers of homozygous and DH pathogenic sequence variants (PSVs) in major cancer susceptibility genes. METHODS: Individuals referred for multigene panel testing at Blueprint Genetics laboratory were included. Ethically approved comparison of cancer type and age at diagnosis between DH, homozygous, and single PSV carriers was performed per gene. RESULTS: Of 6,685 eligible participants, 928 (13.9%) were single heterozygous PSV carriers, 6 (0.09%) were homozygous PSV carriers, and 17 (0.25%) were DH PSV carriers. Mean age at diagnosis of any cancer among single PSV age was 46.8 ± 14.9 years and among DH PSV carriers 37.6 ± 13.0 years (P < 0.0001). Notably, age at diagnosis for breast cancer among single BRCA1 PSV carriers (n = 59) was 43.8 ± 8.7 years (p = 0.7606), among single BRCA2 PSV carriers (n = 52)-47.9 ± 13.0 years (p = 0.2274) compared with 42.3 ± 13.0 years among DH PSV carriers (n = 10- 9 of whom were carriers of either BRCA1 or BRCA2). CONCLUSION: DH for PSV in two cancer susceptibility genes is a rare event, and the mean age at cancer diagnosis is younger in DH PSV carriers compared with single PSV carriers.

9.
Cell Rep ; 43(8): 114618, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146181

RESUMEN

Adar null mutant mouse embryos die with aberrant double-stranded RNA (dsRNA)-driven interferon induction, and Adar Mavs double mutants, in which interferon induction is prevented, die soon after birth. Protein kinase R (Pkr) is aberrantly activated in Adar Mavs mouse pup intestines before death, intestinal crypt cells die, and intestinal villi are lost. Adar Mavs Eifak2 (Pkr) triple mutant mice rescue all defects and have long-term survival. Adenosine deaminase acting on RNA 1 (ADAR1) and PKR co-immunoprecipitate from cells, suggesting PKR inhibition by direct interaction. AlphaFold studies on an inhibitory PKR dsRNA binding domain (dsRBD)-kinase domain interaction before dsRNA binding and on an inhibitory ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA provide a testable model of the inhibition. Wild-type or editing-inactive human ADAR1 expressed in A549 cells inhibits activation of endogenous PKR. ADAR1 dsRNA binding is required for, but is not sufficient for, PKR inhibition. Mutating the ADAR1 dsRBD3-PKR contact prevents co-immunoprecipitation, ADAR1 inhibition of PKR activity, and co-localization of ADAR1 and PKR in cells.

10.
Zool Res ; 45(5): 1027-1036, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147717

RESUMEN

Glass catfish ( Kryptopterus vitreolus) are notable in the aquarium trade for their highly transparent body pattern. This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body, although certain black and silver pigments remain in the face and head. To date, however, the molecular mechanisms underlying this transparent phenotype remain largely unknown. To explore the genetic basis of this transparency, we constructed a chromosome-level haplotypic genome assembly for the glass catfish, encompassing 32 chromosomes and 23 344 protein-coding genes, using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines. Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene, encoding tyrosinase-related protein 1, rendering it a nonfunctional pseudogene. Notably, a synteny comparison with over 30 other fish species identified the loss of the endothelin-3 ( edn3b) gene in the glass catfish genome. To investigate the role of edn3b, we generated edn3b -/- mutant zebrafish, which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish. These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish. Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish. These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish, but also offer a valuable genetic resource for further research on pigmentation in various animal species.


Asunto(s)
Bagres , Genoma , Animales , Bagres/genética , Fenotipo , Cromosomas/genética , Pigmentación/genética
11.
Glia ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149866

RESUMEN

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1G93A mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1G93A mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.

12.
Eur J Pharmacol ; 980: 176873, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117264

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.

13.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125771

RESUMEN

Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.


Asunto(s)
Aciltransferasas , Síndrome de Barth , Cardiomiopatías , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Animales , Ratones , Aciltransferasas/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Masculino , Humanos , Mutación Puntual , Modelos Animales de Enfermedad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo
14.
Plant Commun ; : 101047, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39138865

RESUMEN

Calcium-dependent protein kinases (CDPKs) are pivotal signaling transduction enzymes in plants, especially responsive to diverse stress, including herbivory. In this study, through comprehensive analysis of CDPK gene family in upland cotton, we showed that GhCPKs are widely expressed in multiple tissues of cotton and positively respond to various biotic and abiotic stress. We developed a strategy for screening insect-resistant genes based on the CRISPR/Cas9 mutant library of GhCPKs. The library contains 82 members of the GhCPKs using 246 sgRNAs to generate 518 independent T0 plants. The coverage rate of target genes reached to 86.18%, the genome editing rate reached to 89.49%, and the editing heritability reached 82%. Through field insect bioassay, 14 GhCPK mutants resistant or susceptible to insect were identified. The most obvious insect-resistant mutant, cpk33/74 (simultaneously knocking out the homologous genes GhCPK33 and GhCPK74), was selected for further study. Oral secretions (OS) from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid (JA) content. S-adenosylmethionine synthase (SAMS) is an important protein involved in plant stress response, protein interaction experiments provided evidence of interactions between GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2, respectively. Additionally, silencing GhSAMS1 and GhSAM2 in cotton using VIGS resulted in decreased defense against S. litura. This study provides an effective strategy for constructing a mutant library of gene families in polyploid plant species and valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.

15.
ChemMedChem ; : e202400418, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153203

RESUMEN

Heat Shock Protein 90 (Hsp90) is responsible for the proper folding and maturation of ~400 client protein substrates, many of which are directly associated with the ten hallmarks of cancer. Hsp90 is a great target for cancer therapy including melanoma, since Hsp90 inhibition can disrupt multiple oncogenic pathways simultaneously. In this study, we report the synthesis and anti-proliferative activity manifested by a series of Hsp90 C-terminal inhibitors against mutant BRAF and wild-type BRAF melanoma cells. Furthermore, we explored structure-activity relationships (SAR) for the amide moiety of 6 (B1), a novel Hsp90 C-terminal inhibitor via introduction of amide bioisosteres. Compound 6 displayed an IC50 of 1.01 µM, 0.782 µM, 0.607 µM and 1.413 µM against SKMel173, SKMel103, SKMel19 and A375 cells, respectively.

16.
J Hazard Mater ; 478: 135460, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39151356

RESUMEN

Arsenate is a highly toxic element and excessive accumulation of arsenic in the aquatic environment easily triggers a problem threatening the ecological health. Phytoremediation has been widely explored as a method to alleviate As contamination. Here, the green algae, Chlamydomonas reinhardtii was investigated by profiling the accumulation of arsenate and phosphorus, which share the same uptake pathway, in response to arsenic stress. Both C. reinhardtii wild type C30 and the Crpht3 mutant were cultured under arsenic stress, and demonstrated a similar growth phenotype under limited phosphate supply. Sufficient phosphate obviously increased the uptake of polyphosphate and intercellular phosphate in the Crpht3 mutant, which increased the arsenic tolerance of the Crpht3 mutant under stress from 500 µmol L-1 As(V). Upregulation of the PHT3 gene in the Crpht3 mutant increased accumulation of phosphate in the cytoplasm under arsenate stress, which triggered a regulatory role for the differentially expressed genes that mediated improvement of the glutathione redox cycle, antioxidant activity and detoxification. While the wild type C30 showed weak arsenate tolerance because of little phosphate accumulation. These results suggest that the enhanced arsenic tolerance of the Crpht3 mutant is regulated by the PHT3 gene mediation. This study provides insight onto the responsive mechanisms of the PHT3 gene-mediated in alleviating arsenic toxicity in plants.

17.
Environ Res ; : 119726, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102937

RESUMEN

Genetically modified (GM) crop cultivation has received a lot of attention in recent years due to the substantial public debate. Consequently, an in-depth investigation of excessively used GM herbicide-tolerant crops is a vital step for the biosafety of genetically modified plants. Several studies have been conducted to study the impact of transgenic GM crops on soil microbial composition; however, research into the effects of non-transgenic GM crops is inadequate. In the current work, high-throughput sequencing was used to evaluate the impact of the acetolactate synthase (ALS)-mutant (WK170B), its control (YN19B), and the imazamox (IM) herbicide on the wheat rhizobiome. Under normal growth conditions, our work revealed a minimal impact of ALS-mutant WK170B on the rhizosphere microbiome compared to the control YN10B, except for some cyanobacterial microorganisms that showed a significant increase in abundance. This suggests that the gene mutation could potentially have a beneficial impact on the bacterial communities present in the rhizosphere. Following IM exposure, taxonomic analysis revealed a significant reduction in the relative abundance of Ralstonia pickettii and an unidentified member of the genus Ancylothrix 8PC. Analyses of both alpha and beta diversity revealed a statistically significant increase in both microbial richness and species diversity. IM-induced relative abundance modulation was also evident through Linear discriminant analysis Effect Size (LEfSe), MetaStat, and heatmap analyses. The SIMPER analysis revealed that the microbial taxa Massilia, Limnobacter, Hydrogenophaga, Ralstonia, Nitrospira, and Ramlibacter exhibited the highest vulnerability to IM exposure. The functional attributes analysis revealed that the relative abundance of genes associated with the extracellular matrix-receptor interaction, which is responsible for structural support and stress response, increased significantly following IM exposure. Collectively, our study identifies key microbial taxa in the wheat rhizobiome that are sensitive to IM herbicides and provides a foundation for assessing the environmental risks associated with IM herbicide use.

18.
Cancer Med ; 13(15): e70074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101505

RESUMEN

BACKGROUND: Breast cancer, a leading cause of female mortality, is closely linked to mutations in estrogen receptor beta (ESR2), particularly in the ligand-binding domain, which contributed to altered signaling pathways and uncontrolled cell growth. OBJECTIVES/AIMS: This study investigates the molecular and structural aspects of ESR2 mutant proteins to identify shared pharmacophoric regions of ESR2 mutant proteins and potential therapeutic targets aligned within the pharmacophore model. METHODS: This study was initiated by establishing a common pharmacophore model among three mutant ESR2 proteins (PDB ID: 2FSZ, 7XVZ, and 7XWR). The generated shared feature pharmacophore (SFP) includes four primary binding interactions: Hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), hydrophobic interactions (HPho), and Aromatic interactions (Ar), along with halogen bond donors (XBD) and totalling 11 features (HBD: 2, HBA: 3, HPho: 3, Ar: 2, XBD: 1). By employing an in-house Python script, these 11 features distributed into 336 combinations, which were used as query to isolate a drug library of 41,248 compounds and subjected to virtual screening through the generated SFP. RESULTS: The virtual screening demonstrated 33 hits showing potential pharmacophoric fit scores and low RMSD value. The top four compounds: ZINC94272748, ZINC79046938, ZINC05925939, and ZINC59928516 showed a fit score of more than 86% and satisfied the Lipinski rule of five. These four compounds and a control underwent molecular (XP Glide mode) docking analysis against wild-type ESR2 protein (PDB ID: 1QKM), resulting in binding affinity of -8.26, -5.73, -10.80, and -8.42 kcal/mol, respectively, along with the control -7.2 kcal/mol. Furthermore, the stability of the selected candidates was determined through molecular dynamics (MD) simulations of 200 ns and MM-GBSA analysis. CONCLUSION: Based on MD simulations and MM-GBSA analysis, our study identified ZINC05925939 as a promising ESR2 inhibitor among the top four hits. However, it is essential to conduct further wet lab evaluation to assess its efficacy.


Asunto(s)
Neoplasias de la Mama , Receptor beta de Estrógeno , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/química , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Mutación , Simulación del Acoplamiento Molecular , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación de Dinámica Molecular , Ligandos , Farmacóforo
19.
Endocrine ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136897

RESUMEN

BACKGROUND: Dabrafenib, an inhibitor of the B-Raf proto-oncogene (BRAF) V600E mutant, has become the major drug for targeted therapy of papillary thyroid cancer (PTC) with the BRAF V600E mutant; however, acquired resistance is inevitable. OBJECTIVE: To identify key transcription factors (TFs) involved in dabrafenib resistance and identify targets to reverse dabrafenib resistance. METHODS: Dabrafenib-resistant PTC cell lines BCPAP/DabR and K1/DabR were established, and phenotypic assays were performed to validate the malignant phenotype. RNA sequencing and bioinformatics analyses were used to identify differentially expressed genes (DEGs) and screen TFs involved in resistant phenotype-related pathways. The role of the key TF POU5F1B in dabrafenib resistance was further validated using gene gain-and-loss assays. RESULTS: BCPAP/DabR and K1/DabR were resistant to dabrafenib, with a resistance index of 5-8. Resistant cells exhibited slower proliferation, strong migration, and spheroid-forming abilities. RNA sequencing screened 6233 DEGs in the resistant group, including 2687 protein-coding RNA (mRNA). Venn analysis indicated that three genes, E2F2, WNT4, and POU5F1B, were involved in resistant phenotype-related pathways and were included in the TF regulatory network. Four TFs of the three genes, POU5F1B, TBX4, FOXO4, and FOXP3, were validated, and POU5F1B showed the highest validated fold-change. Overexpression of POU5F1B in sensitive cells resulted in resistance to dabrafenib and induced a malignant phenotype, whereas silencing it sensitized the resistant cells and reversed the resistant phenotype. CONCLUSION: This study successfully established two dabrafenib-resistant PTC cell lines, and POU5F1B could be a potential target for reversing dabrafenib resistance.

20.
J Neurooncol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133381

RESUMEN

INTRODUCTION: The T2-FLAIR mismatch sign is a characteristic imaging biomarker for astrocytoma, isocitrate dehydrogenase (IDH)-mutant. However, investigators have provided varying interpretations of the positivity/negativity of this sign given for individual cases the nature of qualitative visual assessment. Moreover, MR sequence parameters also influence the appearance of the T2-FLAIR mismatch sign. To resolve these issues, we used synthetic MR technique to quantitatively evaluate and differentiate astrocytoma from oligodendroglioma. METHODS: This study included 20 patients with newly diagnosed non-enhanced IDH-mutant diffuse glioma who underwent preoperative synthetic MRI using the Quantification of Relaxation Times and Proton Density by Multiecho acquisition of a saturation-recovery using Turbo spin-Echo Readout (QRAPMASTER) sequence at our institution. Two independent reviewers evaluated preoperative conventional MR images to determine the presence or absence of the T2-FLAIR mismatch sign. Synthetic MRI was used to measure T1, T2 and proton density (PD) values in the tumor lesion. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance. RESULTS: The pathological diagnoses included astrocytoma, IDH-mutant (n = 12) and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (n = 8). The sensitivity and specificity of T2-FLAIR mismatch sign for astrocytoma were 66.7% and 100% [area under the ROC curve (AUC) = 0.833], respectively. Astrocytoma had significantly higher T1, T2, and PD values than did oligodendroglioma (p < 0.0001, < 0.0001, and 0.0154, respectively). A cutoff lesion T1 value of 1580 ms completely differentiated astrocytoma from oligodendroglioma (AUC = 1.00). CONCLUSION: Quantitative evaluation of non-enhanced IDH-mutant diffuse glioma using synthetic MRI allowed for better differentiation between astrocytoma and oligodendroglioma than did conventional T2-FLAIR mismatch sign. Measurement of T1 and T2 value by synthetic MRI could improve the differentiation of IDH-mutant diffuse gliomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA