Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697952

RESUMEN

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Asunto(s)
Proteínas Bacterianas , Calcio , Pared Celular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Calcio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Pared Celular/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mutación , Unión Proteica , Ácidos Micólicos/metabolismo
2.
Animals (Basel) ; 14(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38539946

RESUMEN

THE PROBLEM: Ante-mortem diagnosis of Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is normally achieved through faecal culture, PCR, or serological tests, but agreement as to which samples are positive for Johne's disease is often poor and sensitivities are low, particularly in early-stage infections. The potential solution: Mycobacterial cells contain very complex characteristic mixtures of mycolic acid derivatives that elicit antibodies during infection; this has been used to detect infections in humans. Here, we explore its application in providing an assay differentiating infected from vaccinated animals (DIVA assay) for Johne's disease in cattle. METHOD: Antibody responses to different classes of mycolic acid derivatives were measured using ELISA for serum from cattle positive for MAP by both faecal PCR and commercial serum ELISA, or just by PCR, and from animals from herds with no history of Johne's disease, bovine tuberculosis reactors, BCG-vaccinated, BCG-vaccinated and M. bovis-infected, and Gudair-vaccinated animals. RESULTS: The best-performing antigens, ZAM295 and ST123-the latter a molecule present in the cells of MAP but not of Mycobacterium bovis-achieved a sensitivity of 75% and 62.5%, respectively, for serum from animals positive by both faecal PCR and a commercial MAP serum ELISA, at a specificity of 94% compared to 80 no-history negatives. Combining the results of separate assays with two antigens (ST123 and JRRR121) increased the sensitivity/specificity to 75/97.5%. At the same cut-offs, animals vaccinated with Gudair or BCG vaccines and bTB reactors showed a similar specificity. The specificity in BCG-vaccinated but M. bovis-infected animals dropped to 85%. Combining the results of two antigens gave a sensitivity/specificity of 37.5/97.5% for the full set of 80 PCR-positive samples, detecting 30 positives compared 16 for IDEXX. CONCLUSION: Serum ELISA using synthetic lipids distinguishes effectively between MAP-negative cattle samples and those positive by both PCR and a commercial MAP serodiagnostic, without interference by Gudair or BCG vaccination. It identified almost twice as many PCR positives as the commercial serodiagnostic, offering the possibility of earlier detection of infection.

3.
Protein Sci ; 33(4): e4964, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501584

RESUMEN

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Acido Graso Sintasa Tipo II/química , Ácidos Micólicos/metabolismo , Hidroliasas/química
4.
mBio ; 15(3): e0296823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294237

RESUMEN

Of the approximately 10 million cases of Mycobacterium tuberculosis (Mtb) infections each year, over 10% are resistant to the frontline antibiotic isoniazid (INH). INH resistance is predominantly caused by mutations that decrease the activity of the bacterial enzyme KatG, which mediates the conversion of the pro-drug INH to its active form INH-NAD. We previously discovered an inhibitor of Mtb respiration, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a collection of INH-resistant mutants to INH through an unknown mechanism. To investigate the mechanism of action of C10, we exploited the toxicity of high concentrations of C10 to select for resistant mutants. We discovered two mutations that confer resistance to the disruption of energy metabolism and allow for the growth of Mtb in high C10 concentrations, indicating that growth inhibition by C10 is associated with inhibition of respiration. Using these mutants as well as direct inhibitors of the Mtb electron transport chain, we provide evidence that inhibition of energy metabolism by C10 is neither sufficient nor necessary to potentiate killing by INH. Instead, we find that C10 acts downstream of INH-NAD synthesis, causing Mtb to become particularly sensitive to inhibition of the INH-NAD target, InhA, without changing the concentration of INH-NAD or the activity of InhA, the two predominant mechanisms of potentiating INH. Our studies revealed that there exists a vulnerability in Mtb that can be exploited to render Mtb sensitive to otherwise subinhibitory concentrations of InhA inhibitor.IMPORTANCEIsoniazid (INH) is a critical frontline antibiotic to treat Mycobacterium tuberculosis (Mtb) infections. INH efficacy is limited by its suboptimal penetration of the Mtb-containing lesion and by the prevalence of clinical INH resistance. We previously discovered a compound, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a set of INH-resistant mutants to INH. Resistance is typically mediated by katG mutations that decrease the activation of INH, which is required for INH to inhibit the essential enzyme InhA. Our current work demonstrates that C10 re-sensitizes INH-resistant katG-hypomorphs without enhancing the activation of INH. We furthermore show that C10 causes Mtb to become particularly vulnerable to InhA inhibition without compromising InhA activity on its own. Therefore, C10 represents a novel strategy to curtail the development of INH resistance and to sensitize Mtb to sub-lethal doses of INH, such as those achieved at the infection site.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación , Catalasa/genética , Pruebas de Sensibilidad Microbiana
5.
Cell Surf ; 10: 100116, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38044953

RESUMEN

The mycomembrane (MM) is a mycolic acid layer covering the surface of Mycobacteria and related species. This group includes important pathogens such as Mycobacterium tuberculosis, Corynebacterium diphtheriae, but also the biotechnologically important strain Corynebacterium glutamicum. Biosynthesis of the MM is an attractive target for antibiotic intervention. The first line anti-tuberculosis drug ethambutol (EMB) and the new drug candidate, benzothiazinone 043 (BTZ) interfere with the synthesis of the arabinogalactan (AG), which is a structural scaffold for covalently attached mycolic acids that form the inner leaflet of the MM. We previously showed that C. glutamicum cells treated with a sublethal concentration of EMB lose the integrity of the MM. In this study we examined the effects of BTZ on the cell envelope. Our work shows that BTZ efficiently blocks the apical growth machinery, however effects in combinatorial treatment with ß-lactam antibiotics are only additive, not synergistic. Transmission electron microscopy (TEM) analysis revealed a distinct middle layer in the septum of control cells considered to be the inner leaflet of the MM covalently attached to the AG. This layer was not detectable in the septa of BTZ or EMB treated cells. In addition, we observed that EMB treated cells have a thicker and less electron dense peptidoglycan (PG). While EMB and BTZ both effectively block elongation growth, BTZ also strongly reduces septal cell wall synthesis, slowing down growth effectively. This renders BTZ treated cells likely more tolerant to antibiotics that act on growing bacteria.

6.
Tuberculosis (Edinb) ; 143S: 102415, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38012929

RESUMEN

This paper is dedicated to the memory of Professor David Ernest Minnikin (1939-2021). David was one of the key scientists who pioneered the field of Mycobacterium tuberculosis cell envelope research for over half a century. From the classification, identification, and extraction of the unusual lipids of the mycobacterial cell wall, to exploiting them as characteristic lipid biomarkers for sensitive detection, his ideas enlightened a whole world of possibilities within the tuberculosis (TB) field. In addition, his definition of the intricate models now forms a key milestone in our understanding of the M. tuberculosis cell envelope and has resolved many unanswered questions on the evolution of M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Ácidos Micólicos , Tuberculosis/diagnóstico , Pared Celular , Biomarcadores
7.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3827-3837, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37805857

RESUMEN

Mycolic acids (MAs), i.e. 2-alkyl, 3-hydroxy long-chain fatty acids, are the hallmark of the cell envelope of Mycobacterium tuberculosis and are related with antibiotic resistance and host immune escape. Nowadays, they've become hot target of new anti-tuberculosis drugs. There are two main methods to detect MAs, 14C metabolic labeling thin-layer chromatography (TLC) and liquid chromatograph mass spectrometer (LC-MS). However, the user qualification of 14C or the lack of standards for LC-MS hampered the easy use of this method. TLC is a common way to analyze chemical substance and can be used to analyze MAs. In this study, we used tetrabutylammonium hydroxide and methyl iodide to hydrolyze and formylate MAs from mycobacterium cell wall. Subsequently, we used diethyl ether to extract methyl mycolate. By this method, we can easily extract and analyze MA in regular biological labs. The results demonstrated that this method could be used to compare MAs of different mycobacterium in different growth phases, MAs of mycobacteria treated by anti-tuberculosis drugs or MAs of mycobacterium mutants. Therefore, we can use this method as an initial validation for the changes of MAs in researches such as new drug screening without using radioisotope or when the standards are not available.


Asunto(s)
Mycobacterium tuberculosis , Ácidos Micólicos , Ácidos Micólicos/análisis , Ácidos Micólicos/metabolismo , Cromatografía en Capa Delgada , Ácidos Grasos , Antituberculosos/farmacología
8.
Microbiol Resour Announc ; 12(10): e0049223, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37768090

RESUMEN

Gordonia alkaliphila is a little known mesophilic Gram-positive rod-shaped bacterium. We report the 3.85-Mbp genome sequence of G. alkaliphila strain WW102, isolated from wastewater at a research center with multiple-species laboratory animal facilities. The genome predicted FadD32 gene clusters that are involved in the biosynthesis of mycolic acids as found in Mycobacterium tuberculosis.

9.
Elife ; 122023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477291

RESUMEN

The simultaneous delivery of protein and lipid antigens via nanoparticles may help efforts to develop a new vaccine for tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Vacunas , Humanos , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Tuberculosis/prevención & control , Antígenos/metabolismo , Antígenos Bacterianos
10.
Metabolites ; 13(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512516

RESUMEN

Lipidomics analyses of bacteria offer the potential to detect and monitor infections in a host since many bacterial lipids are not present in mammals. To evaluate this omics approach, we first built a database of bacterial lipids for representative Gram-positive and Gram-negative bacteria. Our lipidomics analysis of the reference bacteria involved high-resolution mass spectrometry and electrospray ionization with less than a 1.0 ppm mass error. The lipidomics profiles of bacterial cultures clearly distinguished between Gram-positive and Gram-negative bacteria. In the case of bovine paratuberculosis (PTB) serum, we monitored two unique bacterial lipids that we also monitored in Mycobacterium avian subspecies PTB. These were PDIM-B C82, a phthiodiolone dimycocerosate, and the trehalose monomycolate hTMM 28:1, constituents of the bacterial cell envelope in mycolic-containing bacteria. The next step will be to determine if lipidomics can detect subclinical PTB infections which can last 2-to-4 years in bovine PTB. Our data further suggest that it will be worthwhile to continue building our bacterial lipidomics database and investigate the further utility of this approach in other infections of veterinary and human clinical interest.

11.
Expert Opin Drug Discov ; 18(7): 707-724, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37226498

RESUMEN

INTRODUCTION: Tuberculosis and nontuberculous mycobacterial infections are notoriously difficult to treat, requiring long-courses of intensive multi-drug therapies associated with adverse side effects. To identify better therapeutics, whole cell screens have identified novel pharmacophores, a surprisingly high number of which target an essential lipid transporter known as MmpL3. AREAS COVERED: This paper summarizes what is known about MmpL3, its mechanism of lipid transport and therapeutic potential, and provides an overview of the different classes of MmpL3 inhibitors currently under development. It further describes the assays available to study MmpL3 inhibition by these compounds. EXPERT OPINION: MmpL3 has emerged as a target of high therapeutic value. Accordingly, several classes of MmpL3 inhibitors are currently under development with one drug candidate (SQ109) having undergone a Phase 2b clinical study. The hydrophobic character of most MmpL3 series identified to date seems to drive antimycobacterial potency resulting in poor bioavailability, which is a significant impediment to their development. There is also a need for more high-throughput and informative assays to elucidate the precise mechanism of action of MmpL3 inhibitors and drive the rational optimization of analogues.


Asunto(s)
Proteínas de la Membrana , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacología , Diseño de Fármacos , Lípidos , Proteínas Bacterianas
12.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986435

RESUMEN

Mycobacterium tuberculosis, the pathogen that causes tuberculosis, is responsible for the death of 1.5 million people each year and the number of bacteria resistant to the standard regimen is constantly increasing. This highlights the need to discover molecules that act on new M. tuberculosis targets. Mycolic acids, which are very long-chain fatty acids essential for M. tuberculosis viability, are synthesized by two types of fatty acid synthase (FAS) systems. MabA (FabG1) is an essential enzyme belonging to the FAS-II cycle. We have recently reported the discovery of anthranilic acids as MabA inhibitors. Here, the structure-activity relationships around the anthranilic acid core, the binding of a fluorinated analog to MabA by NMR experiments, the physico-chemical properties and the antimycobacterial activity of these inhibitors were explored. Further investigation of the mechanism of action in bacterio showed that these compounds affect other targets than MabA in mycobacterial cells and that their antituberculous activity is due to the carboxylic acid moiety which induces intrabacterial acidification.

13.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771014

RESUMEN

Bilayers of mycolic acids (MAs) form the outer membrane of Mycobacterium tuberculosis that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 µs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes. The structure and properties of the membranes are crucially dependent on the initial packing of the α-mycolic acid (AMA) molecules, as well as on the presence of the secondary membrane components, keto- and methoxy mycolic acids (KMAs and MMAs). In the case of AMA-based membranes, the most labile conformation is W while other types of conformations (sU as well as sZ, eU, and eZ) are much more stable. In the multicomponent membranes, the presence of the KMA and MMA components (in the W conformation) additionally stabilizes both the W and eU conformations of AMA. The membrane in which AMA prevails in the eU conformation is much thicker and, at the same time, much denser. Such a packing of the MA molecules promotes the formation of a significantly stronger outer mycobacterial membrane that should be much more resistant to the threatening external factors.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Conformación Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/química , Ácidos Micólicos/química
14.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203570

RESUMEN

Mycolic acids constitute pivotal constituents within the cell wall structure of Mycobacterium tuberculosis. Due to their structural diversity, the composition of mycolic acids exhibits substantial variations among different strains, endowing them with the distinctive label of being the 'signature' feature of mycobacterial species. Within Mycobacterium tuberculosis, the primary classes of mycolic acids include α-, keto-, and methoxy-mycolic acids. While these mycolic acids are predominantly esterified to the cell wall components (such as arabinogalactan, alginate, or glucose) of Mycobacterium tuberculosis, a fraction of free mycolic acids are secreted during in vitro growth of the bacterium. Remarkably, different types of mycolic acids possess varying capabilities to induce foamy macro-phages and trigger immune responses. Additionally, mycolic acids play a regulatory role in the lipid metabolism of host cells, thereby exerting influence over the progression of tuberculosis. Consequently, the multifaceted properties of mycolic acids shape the immune evasion strategy employed by Mycobacterium tuberculosis. A comprehensive understanding of mycolic acids is of paramount significance in the pursuit of developing tuberculosis therapeutics and unraveling the intricacies of its pathogenic mechanisms.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Metabolismo de los Lípidos , Ácidos Micólicos , Alginatos , Tuberculosis/tratamiento farmacológico
15.
Artículo en Inglés | MEDLINE | ID: mdl-36107761

RESUMEN

Opinion 106 of the Judicial Commission has clarified the nomenclature of the taxon variously named Rhodococcus equi, 'Prescottella equi' and Rhodococcus hoagii. As a consequence, we present here the genus name Prescottella and that of its nomenclatural type species, Prescottella equi comb. nov., for valid publication and propose the reclassification of four rhodococcal species as novel combinations in the genus, namely Prescottella agglutinans Guo et al. 2015 comb. nov., Prescottella defluvii Kämpfer et al. 2014 comb. nov., Prescottella soli Li et al. 2015 comb. nov. and Prescottella subtropica Lee et al. 2019 comb. nov. In addition, we note that a clinical isolate, strain 86-07 (=W8901), likely represents an additional species within the genus Prescottella. Nearly a century after the original description of the type strain of the type species as Corynebacterium equi, we provide a stable home for Prescottella equi and its relatives.


Asunto(s)
Rhodococcus equi , Rhodococcus , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Caballos , Filogenia , ARN Ribosómico 16S/genética , Rhodococcus equi/genética , Análisis de Secuencia de ADN
16.
BMC Biol ; 20(1): 147, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729566

RESUMEN

BACKGROUND: Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS: We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS: The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.


Asunto(s)
Mycobacterium tuberculosis , Policétidos , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo
17.
Eur J Med Chem ; 239: 114531, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759907

RESUMEN

Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 µg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.


Asunto(s)
Mycobacterium tuberculosis , Quinolinas , Tuberculosis , Animales , Antituberculosos/farmacología , Proteínas Bacterianas , Isoniazida/farmacología , Mamíferos , Ácidos Micólicos , Quinolinas/farmacología
18.
Front Microbiol ; 13: 818714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602011

RESUMEN

Mycolic acids are the key constituents of mycobacterial cell wall, which protect the bacteria from antibiotic susceptibility, helping to subvert and escape from the host immune system. Thus, the enzymes involved in regulating and biosynthesis of mycolic acids can be explored as potential drug targets to kill Mycobacterium tuberculosis (Mtb). Herein, Kyoto Encyclopedia of Genes and Genomes is used to understand the fatty acid metabolism signaling pathway and integrative computational approach to identify the novel lead molecules against the mtFabH (ß-ketoacyl-acyl carrier protein synthase III), the key regulatory enzyme of the mycolic acid pathway. The structure-based virtual screening of antimycobacterial compounds from ChEMBL library against mtFabH results in the selection of 10 lead molecules. Molecular binding and drug-likeness properties of lead molecules compared with mtFabH inhibitor suggest that only two compounds, ChEMBL414848 (C1) and ChEMBL363794 (C2), may be explored as potential lead molecules. However, the spatial stability and binding free energy estimation of thiolactomycin (TLM) and compounds C1 and C2 with mtFabH using molecular dynamics simulation, followed by molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) indicate the better activity of C2 (ΔG = -14.18 kcal/mol) as compared with TLM (ΔG = -9.21 kcal/mol) and C1 (ΔG = -13.50 kcal/mol). Thus, compound C1 may be explored as promising drug candidate for the structure-based drug designing of mtFabH inhibitors in the therapy of Mtb.

19.
Microbiol Mol Biol Rev ; 86(2): e0001322, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35435731

RESUMEN

Cyclopropane fatty acid (CFA) synthase catalyzes a remarkable reaction. The cis double bonds of unsaturated fatty acyl chains of phospholipid bilayers are converted to cyclopropane rings by transfer of a methylene moiety from S-adenosyl-L-methionine (SAM). The substrates of this modification are functioning membrane bilayer phospholipids. Indeed, in Escherichia coli the great bulk of phospholipid synthesis occurs during exponential growth phase, but most cyclopropyl synthesis occurs in early stationary phase. In vitro the only active methylene group acceptor substrate is phospholipid bilayers containing unsaturated fatty acyl chains.


Asunto(s)
Ácidos Grasos , Fosfolípidos , Bacterias , Biología , Ciclopropanos , Escherichia coli , Ácidos Grasos/química , Fosfolípidos/química
20.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328715

RESUMEN

Corynebacterium diphtheriae, the etiological agent of diphtheria, is a re-emerging pathogen, responsible for several thousand deaths per year. In addition to diphtheria, systemic infections, often by non-toxigenic strains, are increasingly observed. This indicates that besides the well-studied and highly potent diphtheria toxin, various other virulence factors may influence the progression of the infection. This review focuses on the known components of C. diphtheriae responsible for adhesion, invasion, inflammation, and cell death, as well as on the cellular signaling pathways activated upon infection.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Corynebacterium , Difteria/microbiología , Toxina Diftérica , Humanos , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA