Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 19: 1912-1922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116245

RESUMEN

2,2'-Bis(4-dimethylaminophenyl)- and 2,2'-dicyclohexyl-1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazole ((N-DMBI)2 and (Cyc-DMBI)2) are quite strong reductants with effective potentials of ca. -2 V vs ferrocenium/ferrocene, yet are relatively stable to air due to the coupling of redox and bond-breaking processes. Here, we examine their use in accomplishing electron transfer-induced bond-cleavage reactions, specifically dehalogenations. The dimers reduce halides that have reduction potentials less cathodic than ca. -2 V vs ferrocenium/ferrocene, especially under UV photoexcitation (using a 365 nm LED). In the case of benzyl halides, the products are bibenzyl derivatives, whereas aryl halides are reduced to the corresponding arenes. The potentials of the halides that can be reduced in this way, quantum-chemical calculations, and steady-state and transient absorption spectroscopy suggest that UV irradiation accelerates the reactions via cleavage of the dimers to the corresponding radical monomers.

2.
Beilstein J Org Chem ; 19: 1651-1663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942021

RESUMEN

1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles, 1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles, 12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g-i+, respectively) have been synthesized and reduced with NaBH4 to 1gH, 1hH, and 1iH, and with Na:Hg to 1g2 and 1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts. E(1+/1•) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducing E(1+/1•) values, as well as cathodic shifts in E(12•+/12) and E(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the 1H species with PC61BM. Because 2-aryl groups stabilize radicals, 1b2 and 1g2 exhibit weaker bonds than 1e2 and 1h2 and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a "cleavage-first" pathway, while 1e2 and 1h2 react only via "electron-transfer-first". 1h2 exhibits the most cathodic E(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers with VII via "electron-transfer-first". Crystal structures show rather long central C-C bonds for 1b2 (1.5899(11) and 1.6194(8) Å) and 1h2 (1.6299(13) Å).

3.
Bioresour Technol ; 364: 128056, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195221

RESUMEN

KOH-activated N-doped hydrochar (KHCN) was synthesized via co-activation method to eliminate atrazine (AT) in water efficiently. Compared to primitive HC, KHCN had advantages of splendid specific surface area (1205.82 m2/g) and developed microsphere structures on the surface. Specially for KHCN, the extra melamine added strengthened and preserved partial structure of polar oxygen-containing groups that were decomposed in the process of pore making. Besides, the estimated uptake amount of AT onto KHCN (216.50 mg/g) was remarkably superior to KHC (114.25 mg/g). KHCN exhibited the pH-dependence for AT removal, and presented excellent uptake capacity at a relatively neutral environment. Notably, the proposed mechanisms for AT removal by KHCN included electrostatic attraction, pore filling, π-π EDA, H-bond as well as hydrophilic effect. Hence, the porous N-doped hydrochar was a kind of adsorbent which was easy to prepare and had the application prospect for AT removal in natural water.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Atrazina/análisis , Atrazina/química , Adsorción , Porosidad , Agua , Contaminantes Químicos del Agua/química , Cinética
4.
Angew Chem Int Ed Engl ; 60(11): 5816-5820, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231911

RESUMEN

Molecular doping plays an important role in the modification of carrier density of organic semiconductors thus enhancing their optoelectronic performance. However, efficient n-doping remains challenging, especially owing to the lack of strongly reducing and air-stable n-dopants. Herein, an N-heterocyclic carbene (NHC) precursor, DMImC, is developed as a thermally activated n-dopant with the excellent stability in air. Its thermolysis in situ regenerates free NHC and subsequently dopes typical organic semiconductors. In sequentially doped FBDPPV films, DMImC does not disturb the π-π packing of the polymer and achieves good miscibility with the polymer. As a result, a high electrical conductivity of up to 8.4 S cm-1 is obtained. Additionally, the thermally activated doping and the excellent air stability permit DMImC to be noninteractively co-processed with polymers in air. Our results reveal that DMImC can be served as an efficient n-dopant suitable for various organic semiconductors.

5.
Biosens Bioelectron ; 160: 112231, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469730

RESUMEN

Anodic N doping is an effective way to improve power generation of bioelectrochemical systems (BESs), but the role of various active N dopant states of the anode on BES performance is still unclear. Herein, the effect of anodic active N dopant states on bioelectricity generation of Shewanella oneidensis MR-1 inoculated BESs particularly including microbial extracellular electron transfer (EET) was explored using experiments and theoretical simulations. It was found a positive linear correlation between the peak current density of BESs and pyrrolic N content of the anode, which would mainly ascribe to the enhancement of both direct electron transfer (DET) and mediated electron transfer (MET) of S. oneidensis MR-1. Morever, the molecule dynamic simulation revealed that such EET improvements of S. oneidensis MR-1 could be due to more remarkable reduction in the thermodynamic and kinetic resistances of the DET and MET processes with anodic doping of pyrrolic N compared to pyridinic N and graphitic N. This work provides a valuable guideline to design of high-performance anodes for potential BES applications.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Pirroles/química , Shewanella/metabolismo , Electricidad , Electrodos/microbiología , Transporte de Electrón , Electrones , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA