RESUMEN
Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated Ni3S2 nanosheets in-situ grown on Ni foam (Fe-Ni3S2@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water. A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni3S2 nanosheets on the Ni foam. Fe-Ni3S2@NF possessed outstanding activity and durability in activating PMS, as it effectively facilitated electron transfer from organic pollutants to PMS. Fe-Ni3S2@NF initially supplied electrons to PMS, causing the catalyst to undergo oxidation, and subsequently accepted electrons from organic compounds, returning to its initial state. The introduction of Fe into the Ni3S2 lattice enhanced electrical conductivity, promoting mediated electron transfer between PMS and organic compounds. The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni3S2, accelerating pollutant abatement due to its porous structure and high conductivity. Furthermore, its monolithic nature simplified the catalyst recycling process. A continuous flow packed-bed reactor by encapsulating Fe-Ni3S2@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h, highlighting its immense potential for practical environmental remediation. This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes.
Asunto(s)
Hierro , Níquel , Oxidación-Reducción , Peróxidos , Contaminantes Químicos del Agua , Níquel/química , Hierro/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Catálisis , Nanoestructuras/química , Transporte de ElectrónRESUMEN
Excess nitrites are potentially threatening to human health, so it is urgent to develop accurate and sensitive methods. The development of sensors can provide early warning of possible hazards and alert people to protect public health. This work presents an NiSx@MoS2-composite with excellent electrochemical activity, representing a key finding for highly sensitive NO2- detection and sensor development. With the assistance of NiSx@MoS2, this electrochemical sensor has excellent quantitative detection performance. It has a wide detection range (0.0001-0.0020 mg/mL) and a low detection limit (1.863*10-5 mg/mL) for NO2-. This electrochemical sensor maintains excellent specificity among numerous interferences, and it completes the accurate detection of different real food samples. Pleasingly, the electrochemical sensor has satisfactory repeatability stability, and potential for practical applications. It would demonstrate tremendous potential in scientific dietary guidance, food safety detection and other fields.
Asunto(s)
Disulfuros , Técnicas Electroquímicas , Límite de Detección , Molibdeno , Molibdeno/química , Técnicas Electroquímicas/instrumentación , Disulfuros/química , Nitritos/análisis , Contaminación de Alimentos/análisisRESUMEN
The rational design of high-performance electrocatalysts is essential for promoting the industrialization of electrocatalytic water-splitting technology. Herein, phosphorus and sulfur co-doped nickel molybdate with rich-oxygen vacancies (P, S-NiMoO4) was prepared as an efficient bifunctional self-supporting water-splitting catalyst from the perspective of enhancing the conductivity and optimizing the electronic configurations. The incorporation of P, S and oxygen vacancies greatly enhances the conductivity and charge-transfer efficiency of NiMoO4. Additionally, P and S can serve as proton carriers and electron acceptors to enhance the catalytic activity by accelerating proton activation and high-valent metal generation in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As expected, P, S-NiMoO4 demonstrates efficient bifunctional catalytic activity with an overpotential of only 31/206 mV at 10 mA cm-2 for HER/OER in 1 M KOH. Meantime, the electrolyzer assembled with P, S-NiMoO4 as electrodes requires a voltage of only 1.55 V to achieve a water-splitting current density of 50 mA cm-2 along with good stability over 110 h. This work puts forward a novel approach based on elemental doping and vacancy engineering for the design of effective and enduring catalysts for water splitting.
RESUMEN
The incorporation of oxyanion groups offers a greater potential for enhancing the activity of oxygen evolution reaction (OER) electrocatalysts compared to traditional metal cations doping, owing to their unique configurations and high electronegativity. However, the incorporation of oxyanion groups that differ from those derived from the oxidation of anions in transition metal monoxides poses significant challenges, thereby limiting further applications of oxyanion group modification approach. Herein, we present a novel sulfate salt assistant approach to fabricate Fe-doped Ni2P modified with SO42-/carbon (Fe-Ni2P-S/C) nanofibers as highly efficient OER electrocatalyst. The optimized Fe-Ni2P-S/C nanofibers display superb OER activity, requiring low overpotentials of 266, 323, and 357 mV at 100, 500, and 1000 mA cm-2, respectively. Theoretical calculations reveal that the co-adsorption of PO43- and SO42- on the surface of reconstructed electrocatalyst can reduce the energy barrier of rate-determining step, thereby resulting in enhanced OER activity. The present study emphasizes the crucial role played by anion groups in OER activity as well as proposes a novel approach for incorporating anion groups into electrocatalysts.
RESUMEN
Transition metal borides (TMBs) with high theoretical capacitances and excellent electronic properties have attracted much attention as a promising active material of supercapacitors (SCs). However, TMB nanoparticles are prone to conduct self-aggregation, which significantly deteriorates the electrochemical performance and structural stability. To address the severe self-aggregation in TMBs and improve the active material utilization, it is imperative to provide a conductive substrate that promotes the dispersion of TMB during growths. In this work, sheet-like nickel cobalt boride (NCB) was grown on molybdenum disulfide (MoS2) hollow spheres (H-MoS2) by using simple template growth and chemical reduction methods. The resultant NCB/H-MoS2-50 was observed with uniform NCB nanosheets structure on the surface of the H-MoS2 and stronger MB bonding. After optimizing the loading amount of H-MoS2, the optimal composite (NCB/H-MoS2-50) modified nickel foam (NF) exhibits a superior specific capacity (1302 C/g) than that of the NCB electrode (957 C/g) at 1 A/g. Excellent rate capability of 84.8% (1104 C/g at 40 A/g) is also achieved by the NCB/H-MoS2-50 electrode. The extraordinary electrochemical performance of NCB/H-MoS2-50 is credited to the unique nanosheet-covered hollow spheres structure for facilitating ion diffusion and versatile charge storage mechanisms from the pseudocapacitive behavior of H-MoS2 and the Faradaic redox behavior of NCB. Furthermore, a hybrid SC is assembled with NCB/H-MoS2-50 and activated carbon (AC) electrodes (NCB/H-MoS2-50//AC), which operates in a potential window up to 1.7 V and delivers a high energy density of 76.8 W h kg-1 at a power density of 850 W kg-1. A distinguished cycling stability of 93.2% over 20,000 cycles is also obtained for NCB/H-MoS2-50//AC. These findings disclose the significant potential of NCB/H-MoS2-50 as a highly performed battery-type material of SCs.
RESUMEN
Designing and developing efficient, low-cost bi-functional oxygen electrocatalysts is essential for effective zinc-air batteries. In this study, we propose a copper dual-doping strategy, which involves doping both porous carbon nanofibers (PCNFs) and nickel fluoride nanoparticles with copper alone, successfully preparing copper-doped nickel fluoride (NiF2) nanorods and copper nanoparticles co-modified PCNFs (Cu@NiF2/Cu-PCNFs) as an efficient bi-functional oxygen electrocatalyst. When copper is doped into the PCNFs in the form of metallic nanoparticles, the doped elemental copper can improve the electronic conductivity of composite materials to accelerate electron conduction. Meanwhile, the copper doping for NiF2 can significantly promote the transformation of nickel fluoride nanoparticles into nanorod structures, thus increasing the electrochemical active surface area and enhancing mass diffusion. The Cu-doped NiF2 nanorods also possess an optimized electronic structure, including a more negative d-band center, smaller bandgap width and lower reaction energy barrier. Under the synergistic effect of these advantages, the obtained Cu@NiF2/Cu-PCNFs exhibit outstanding bi-functional catalytic performances, with a low overpotential of 0.68 V and a peak power density of 222 mW cm-2 in zinc-air batteries (ZABs) and stable cycling for 800 h. This work proposes a one-step way based on the dual-doping strategy, providing important guidance for designing and developing efficient catalysts with well-designed architectures for high-performance ZABs.
RESUMEN
Constructing amorphous/crystalline heterophase structure with high porosity is a promising strategy to effectively tailor the physicochemical properties of electrode materials and further improve the electrochemical performance of supercapacitors. Here, the porous C-doped NiO (C-NiO) with amorphous/crystalline heterophase grown on NF was prepared using NF as Ni source via a self-sacrificial template method. Calcining the self-sacrificial NiC2O4 template at a suitable temperature (400 °C) was beneficial to the formation of porous heterophase structure with abundant cavities and cracks, resulting in high electrical conductivity and rich ion/electron-transport channels. The density functional theory (DFT) calculations further verified that in-situ C-doping could modulate the electronic structure and enhance the OH- adsorption capability. The unique porous amorphous/crystalline heterophase structure greatly accelerated electrons/ions transfer and Faradaic reaction kinetic, which effectively improved the charge storage. The C-NiO calcined at 400 °C (C-NiO(400)) displayed a markedly enhanced specific charge, outstanding rate property and excellent cycling stability. Furthermore, the hybrid supercapacitor assembled by C-NiO(400) and active carbon achieved a high energy density of 49.0 Wh kg-1 at 800 W kg-1 and excellent cycle stability (90.9 % retention at 5 A/g after 10 000 cycles). This work provided a new strategy for designing amorphous/crystalline heterophase electrode materials in high-performance energy storage.
RESUMEN
Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.
Asunto(s)
Compuestos de Manganeso , Níquel , Óxidos , Ozono , Óxidos/química , Níquel/química , Compuestos de Manganeso/química , Ozono/química , Catálisis , Humedad , Cobalto/química , Modelos Químicos , Contaminantes Atmosféricos/químicaRESUMEN
Multi-metallic phosphides offer the possibility to combine the strategies of surface reconstruction, electronic interaction and mechanistic pathway tuning to achieve high electrocatalytic oxygen evolution activity. Here, iron-doped nickel cobalt phosphide nanoparticles (FexCoyNi2-x-yP) with the crystalline NiCoP phase are for the first time synthesized by the solvothermal phosphidization method via the reaction between metal-organic frameworks and white phosphorus. When used to electrochemically catalyze oxygen evolution reaction (OER), the Fe0.4Co0.8Ni0.8P supported by nickel foam requires only 248 mV overpotential to achieve 10 mA cm-2 current densities, and is robust towards the long-term OER in 1 M KOH. The higher number of electrochemically active sites can account for the good OER activity, along with the improved intrinsic activity which is caused by the electron interaction that optimizes the adsorption energy of hydroxyl intermediates, and that increases the acidity of high-valent metal centers. The OER mechanistic pathway involves both adsorbate and lattice oxygen. Surface conversion is observed after OER in alkaline solution, and metal phosphide layer transforms to metal oxides and (oxy)hydroxides.
RESUMEN
Transition-metal phosphates/phosphides showcase significant promise for energy-related applications because of their high theoretical electrochemical characteristics. However, sluggish electro/ion transfer rates and kinetically unfavorable reaction sites hinder their application at high mass loading. Herein, a self-supporting electrode based on transition-metal phosphates was successfully fabricated via a one-step electrodeposition process. The nanosheet structure of transition-metal phosphates, formed by interconnecting nanoparticles, effectively mitigates the impact of stress and achieves a high mass-loading (21 mg cm-2) of the electrode. Additionally, the oxygen vacancy-rich and porous nanostructure of transition-metal phosphates endows the as-prepared electrodes with a significantly increased conductivity and fast ion migration rate for enhancing electrochemical kinetics. Consequently, the as-fabricated transition-metal phosphate electrode displays the highest areal specific capacity of 39.2F cm-2. Furthermore, the asymmetric supercapacitor achieves a maximum energy density of 0.79 mWh cm-2 and a high capacity retention of 93.0 % for 10000 cycles under 60 mA cm-2. This work provides an ideal strategy for fabricating flexible electrodes with high mass loading and synthesizing transition-metal phosphate electrodes rich in oxygen vacancies.
RESUMEN
The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing GOR via the NiOOH/Ni(OH)2 pair. However, the GOR kinetics increases with the amount of Sn, associated with an enhancement of the OH- supply to the catalyst surface for Ni(OH)2 reoxidation to NiOOH. NiSn nanoparticles supported on carbon nanotubes (NiSn/CNT) exhibit excellent current densities and direct GOR via C-C cleavage mechanism, obtaining FA with a Faradaic efficiency (FE) of 93% at 1.45 V vs. reversible hydrogen electrode. GOR selectivity is further studied by varying the applied potential, glucose concentration, reaction time, and temperature. FE toward FA production decreases due to formic overoxidation to carbonates at low glucose concentrations and high applied potentials, while acetic and lactic acids are obtained with high selectivity at high glucose concentrations and 55 °C. Density functional theory calculations show that the SnO2 facilitates the adsorption of glucose on the surface of Ni and promotes the formation of the catalytic active Ni3+ species.
RESUMEN
Etherification and amination of aryl halide scaffolds are commonly used reactions in parallel medicinal chemistry to rapidly scan structure-activity relationships with abundant building blocks. Electrochemical methods for aryl etherification and amination demonstrate broad functional group tolerance and extended nucleophile scope compared to traditional methods. Nevertheless, there is a need for robust and scale-transferable workflows for electrochemical compound library synthesis. Herein we describe a platform for automated electrochemical synthesis of C-X arylation (X = NH, OH) in flow to access compound libraries. A comprehensive Design of Experiment (DoE) study identifies an optimal protocol which generates high yields across > 30 aryl halide scaffolds, diverse amines (including electron-deficient sulfonamides, sulfoximines, amides, and anilines) and alcohols (including serine residues within peptides). Reaction sequences are automated on commercially available equipment to generate libraries of anilines and aryl ethers. The unprecedented application of potentiostatic alternating polarity in flow is essential to avoid accumulating electrode passivation. Moreover, it enables reactions to be performed in air, without supporting electrolyte and with high reproducibility over consecutive runs. Our method represents a powerful means to rapidly generate nucleophile independent C-X arylation compound libraries using flow electrochemistry.
RESUMEN
The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with high d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broad d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding on d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.
RESUMEN
The preparation of enantioenriched diarylmethanol derivatives is described using nickel-catalyzed electrochemical cross-couplings between various alkyl/aryl aldehydes and aryl iodides. Performed in an electrochemical cell equipped with an iron anode and a nickel cathode, this electrocatalytic variant led to the scalemic targeted products in the presence of 2,2-bis((4R,5S)-4,5-diphenyl-4,5-dihydrooxazol-2-yl)acetonitrile (L2), as enantiopure cyano-bis(oxazoline) ligand. X-ray structure analysis of a pre-catalyst, for instance the [Ni(II)(L2)2] complex, with L2 as an anionic bisoxazolinate ligand, confirms the chemical formulation of one nickel surrounded by two ligands. The redox behavior of the new Ni complexes generated in situ was first assessed by cyclic voltammetry showing a redox wave at ca. -1.5 V that can be assigned to the two-electron reduction of the Ni(II) center to the Ni(0) state. Oxidative addition between the electrogenerated Ni(0) complex and aryl iodide was evidenced. An intense current was observed in presence of a mixture of the two substrates pertaining an electrocatalytic process. Interestingly, we found that the sacrificial iron anode plays a crucial role in the catalytic mechanism.
RESUMEN
Present investigations were undertaken to record the vulnerability of testis to nickel oxide nano and microparticles in Wistar rat with special reference to their preferred bioaccumulation, consequent generation of reactive species, reciprocal influence on testosterone synthesis, DNA damage in spermatids and histopathological changes. Suitable numbers of rats were gavaged NiONPs or NiOMPs (5 mg/kg b.w.each) for 15 and 30 days. Testes en bloc were removed and processed for the estimation of selected parameters. Results showed that rat testes could accumulate nickel in an exposure time dependent manner. Generation of malondialdehyde, a denominator of ROS, increased significantly in the testes of NiONPs treated rats. Moreover, serum testosterone values also increased in NiONPs treated rats. Higher DNA damage in sperms was also recorded. Nano and microparticles of nickel, both could induce specific dose and time dependent lesions in the testis of rat. Histopathological results revealed degeneration of germinal epithelium and spermatocytes; hypertrophy of seminiferous tubules and necrosis. SEM results also indicated specific morphological changes in cellular components of tubules. This study suggests that testis is also vulnerable to the adverse effects of NiONPs alike liver and kidney. Both micro and nanoparticles of nickel elicited differential effects in a dose and exposure time dependent manner. However, NiONPs induced greater overall toxicity than NiOMPs. The results are expected to be helpful in determining the human reproductive health risks, associated with environmental/ occupational exposure to nanoparticles of nickel.
RESUMEN
The problem of potentially toxic metal pollution is increasingly acute with the development of human society. In this study, we investigated the remediation of nickel (Ni) and cadmium (Cd) co-contamination through inoculating rice with three new-isolated Ni- and Cd-resistant plant growth-promoting rhizobacteria (PGPR) Y3, Y4, and Y5. These three strains possessed growth-promoting properties, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, the ability of indoleacetic acid (IAA) production, phosphate solubilization, siderophores production, and exopolysaccharide (EPS) development. According to 16S rDNA sequence homology, strains Y3, Y4, and Y5 were identified as Pseudomonas sp., Chryseobacterium sp., and Enterobacter sp., respectively. Based on the results of rice germination experiments conducted under combined toxicity, we set the contamination concentrations for Ni2+ at 20⯵gâ¯mL-1 and Cd2+ at 40⯵gâ¯mL-1. Then we conducted potting experiments at these concentration levels to study the effects of strains Y3, Y4, and Y5 on rice growth under synergistic Ni and Cd stress. The results indicated that the inoculated strains Y3, Y4, and Y5 were effective in promoting the growth of rice seedlings under the combined stress of Ni and Cd, and conferring tolerance to Ni and Cd by increasing the antioxidant enzyme activities of the seedlings. Among them, strain Y3 exhibited stronger ACC deaminase activity, IAA production capacity, and EPS production capacity, showing the most pronounced growth-promoting effect on rice. It was demonstrated that after inoculation with strain Y3, the germination rate of rice seeds increased by 43â¯%, the fresh weight of stems improved by 35â¯%, and the chlorophyll content enhanced by 70â¯% and other growth-promoting phenomena. Additionally, under Ni and Cd stress, strain Y5 performed better than strain Y4 in terms of IAA production capacity and its influence on rice root growth, suggesting that IAA production might play a specifically essential role in root growth under Ni and Cd stress.
Asunto(s)
Cadmio , Ácidos Indolacéticos , Níquel , Oryza , Plantones , Contaminantes del Suelo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Níquel/toxicidad , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Plantones/efectos de los fármacos , Plantones/microbiología , Plantones/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Liasas de Carbono-Carbono/metabolismo , Microbiología del Suelo , Pseudomonas , Germinación/efectos de los fármacos , Sideróforos , Enterobacter/efectos de los fármacos , Biodegradación Ambiental , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrolloRESUMEN
Cyanobacteria provide an economical, feasible, and environmentally friendly solution for heavy metal removal. In addition, plasma can facilitate the removal of heavy metals across various time frames. In this study, we applied plasma-activated water (PAW) to prepare Neowestiellopsis persica A1387 strain medium culture for 0, 10, 15, and 20â¯min via an Atmospheric Cold Plasma Jet device (ACPJ-17A). Nickel removal efficiency was evaluated after 48â¯hours of cultivation under controlled conditions at 0, 10, 30, 60, and 90â¯min. Further investigation was performed through FTIR, GC-MS, and XRD techniques. Statistical analysis of ANOVA and Tukey's test indicated that the samples treated for 15â¯min had the highest biomass dry weight, polysaccharide content, and nickel removal rate (p ≤ 0.05). The GC-MS analysis presented elevated concentrations of ethanol, 1,3-dimethylbenzene, acetic acid, 3-methylbutyl ester, aromatic chemicals, 2-methyl-1-propanol, and 3-octen-2-ol in all samples treated with plasma. The functional group analysis using the FT-IR approach showed increased peak intensities with more extended treatment periods, indicating the addition of methyl, methylene, and hydroxyl groups to the cyanobacterium cell wall. Furthermore, a peak at 468â¯cm⻹ wavelength was observed, correlating to the Ni-O stretching mode after absorption of Ni on the cyanobacterium surface. The XRD data exhibited prominent peaks in all diffraction patterns angles below 20 degrees, suggesting the presence of amorphous and non-crystalline chemical structures within the cyanobacterial structures. The peak intensity increased with longer treatment durations. The 15-min plasma treatment optimized Ni removal, but the efficiency decreased with prolonged exposure due to adverse effects such as increased reactive oxygen species (ROS) production.
Asunto(s)
Biodegradación Ambiental , Níquel , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Cianobacterias/metabolismo , Gases em Plasma , Cromatografía de Gases y Espectrometría de Masas , Agua/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Detecting parts per billion (ppb)-level nitrogen dioxide in high-moisture environments at room temperature without reducing sensing performance is a well-recognized significant challenge for metal oxide-based gas sensors. In this study, metal-organic framework-derived nickel-doped indium oxide (Ni-doped In2O3) mesoporous nanorods were prepared by a solvothermal method combined with the calcination process. The sensors prepared using the obtained Ni-doped In2O3 nanorods showcase an ultrahigh response, low detection limit, and excellent selectivity. Moreover, the abundant active sites triggered by nickel doping and the capillary enhancement effect caused by mesopores endow the sensor with ppb-level (20 ppb) NO2 detection capability in high-moisture environments (95% RH) at room temperature. With the increase in humidity, the carrier concentration of the sensor increases, and the nitric acid generated by nitrogen dioxide dissolved in water can be completely ionized in water and has high conductivity. Therefore, the gas response of the sensors increases with the increase in humidity. This study establishes a promising approach for the development of trace nitrogen dioxide-sensing devices that are resilient in high-humidity environments.
RESUMEN
Aluminum-air battery has the advantages of high energy density, low cost and environmental protection, and is considered as an ideal next-generation energy storage conversion system. However, the slow oxygen reduction reaction (ORR) in air cathode leads to its unsatisfactory performance. Here, we report an electrode made of N and Ni co-doped MnO2 nanotubes. In alkaline solution, Ni/N-MnO2 has higher oxygen reduction activity than undoped MnO2, with an initial potential of 1.00 V and a half-wave potential of 0.75 V. This is because it has abundant defects, high specific surface area and sufficient Mn3+ active sites, which promote the transfer of electrons and oxygen-containing intermediates. Density functional theory (DFT) calculations show that MnO2 doped with N and Ni atoms reduces the reaction overpotential and improves the ORR kinetics. The peak power density and energy density of the Ni/N-MnO2 air electrode increased by 34.03 mW·cm-2 and 316.41 mWh·g-1, respectively. The results show that N and Ni co-doped MnO2 nanotubes are a promising air electrode, which can provide some ideas for the research of aluminum-air batteries.
RESUMEN
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.