Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057900

RESUMEN

(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for Ti(1-x)AxO2, where A stands for any of the eight following neutral substitutional impurities, Fe, Ni, Co, Pd, Pt, Cu, Ag and Au, based on the rutile structure of pristine TiO2. We use a fully unconstrained version of the density functional method with generalized gradient approximation plus the U exchange and correlation, as implemented in the Quantum Espresso free distribution. Within the limitations of a finite-size cell approximation, we report the band structure, energy gaps and absorption spectrum for all these cases. Rather than stressing precise values, we report on two general features: the location of the impurity levels and the general trends of the optical properties in the eight different systems. Our results show that all these substitutional atoms lead to the presence of electronic levels within the pristine gap, and that all of them produce absorptions in the visible and near-infrared ranges of electromagnetic radiation. Such results make these systems interesting for the fabrication of solar cells. Considering the variety of results, Ni and Ag are apparently the most promising substitutional impurities with which to achieve better performance in capturing the solar radiation on the planet's surface.

2.
Materials (Basel) ; 17(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998420

RESUMEN

This study presents theoretical and experimental investigations into the electron and hole color centers in BaFBr crystals, characterizing their electronic and optical properties. Stoichiometric BaFBr crystals grown by the Steber method were used in the experiments. Radiation defects in BaFBr crystals were created by irradiation with 147 MeV 84Kr ions with up to fluences of 1010-1014 ions/cm2. The formation of electron color centers (F(F-), F2(F-), F2(Br-)) and hole aggregates was experimentally established by optical absorption spectroscopy. Performed measurements are compared with theoretical calculations. It allows us to determine the electron transition mechanisms and investigate the processes involved in photoluminescence emission in Eu-doped BaFBr materials to enhance the understanding of the fundamental electronic structure and properties of electron and hole color centers formed in BaFBr crystals.

3.
ACS Sens ; 9(8): 4286-4294, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39077941

RESUMEN

Ammonia (NH3) in exhaled breath (EB) has been a biomarker for kidney function, and accurate measurement of NH3 is essential for early screening of kidney disease. In this work, we report an optical sensor that combines ultraviolet differential optical absorption spectroscopy (UV-DOAS) and spectral reconstruction fitting neural network (SRFNN) for detecting NH3 in EB. UV-DOAS is introduced to eliminate interference from slow change absorption in the EB spectrum while spectral reconstruction fitting is proposed for the first time to map the original spectra onto the sine function spectra by the principle of least absolute deviations. The sine function spectra are then fitted by the least-squares method to eliminate noise signals and the interference of exhaled nitric oxide. Finally, the neural network is built to enable the detection of NH3 in EB at parts per billion (ppb) level. The laboratory results show that the detection range is 9.50-12425.82 ppb, the mean absolute percentage error (MAPE) is 0.83%, and the detection accuracy is 0.42%. Experimental results prove that the sensor can detect breath NH3 and identify EB in simulated patients and healthy people. Our sensor will serve as a new and effective system for detecting breath NH3 with high accuracy and stability in the medical field.


Asunto(s)
Amoníaco , Pruebas Respiratorias , Redes Neurales de la Computación , Amoníaco/análisis , Pruebas Respiratorias/métodos , Pruebas Respiratorias/instrumentación , Humanos , Espectrofotometría Ultravioleta/métodos , Espiración
4.
ACS Appl Mater Interfaces ; 16(31): 41027-41035, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39048298

RESUMEN

High-entropy-alloy nanoparticles (HEA-NPs) composed of 3d transition metallic elements have attracted intensive attention in photothermal conversion regions due to their d-d interband transitions (IBTs). However, the effect arising from the unbalanced elemental ratio still needs more focus. In this work, FeCoNiCrMn HEA-NPs with different elemental ratios among Cr and Mn have been employed to clarify the impact of different composed elements on the optical absorption and photothermal conversion performance. It can be recognized that the unbalanced elemental ratio of HEA-NPs can reduce the photothermal performance. Density functional theory calculation demonstrated that d-d IBTs can be changed by the different composed element ratios, resulting in a number of insufficient filling regions around the Fermi level (±4 eV). As a result, the HEA-NPs (FeCoNiCr0.75Mn0.25) with a balanced elemental ratio exhibit the highest surface temperature of 97.6 °C under 1 sun irradiation, and the evaporation rate and energy conversion efficiency could reach 2.13 kg·m-2·h-1 and 93%, respectively, demonstrating effective solar steam generation behavior.

5.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999002

RESUMEN

We examine the optical and electronic properties of a GaAs spherical quantum dot with a hydrogenic impurity in its center. We study two different confining potentials: (1) a modified Gaussian potential and (2) a power-exponential potential. Using the finite difference method, we solve the radial Schrodinger equation for the 1s and 1p energy levels and their probability densities and subsequently compute the optical absorption coefficient (OAC) for each confining potential using Fermi's golden rule. We discuss the role of different physical quantities influencing the behavior of the OAC, such as the structural parameters of each potential, the dipole matrix elements, and their energy separation. Our results show that modification of the structural physical parameters of each potential can enable new optoelectronic devices that can leverage inter-sub-band optical transitions.

6.
ACS Appl Mater Interfaces ; 16(24): 31513-31523, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840440

RESUMEN

Designing two-dimensional (2D) heterojunctions with rapid response and minimal energy consumption holds immense significance for the advancement of the next generation of electronic devices. Here, we construct a series of Schottky heterojunctions based on TiB4 monolayer and group-IV monochalcogenide monolayers MX (M = Ge, Sn; X = S, Se, Te). Using first-principles calculations, we investigate the structural stability, Schottky contact barrier, tunneling probability, and optical properties of MX/TiB4 heterojunctions. The calculated binding energies reveal that X-type MX/TiB4 heterojunctions exhibit more stable structures than M- and C-type stacking modes. Schottky barrier heights (SBHs) indicate that X-type GeSe/TiB4 and GeTe/TiB4 form n-type Schottky contacts with SBHs of 0.497 and 0.132 eV, respectively, while SnS/TiB4 and SnSe/TiB4 form p-type Schottky contacts with SBHs of 0.557 and 0.418 eV, respectively. Moreover, X-type MX/TiB4 heterojunctions exhibit high susceptibility to interlayer electron tunneling due to their large tunneling probability and strong interlayer interaction. Meanwhile, enhanced optical absorption capacity in MX/TiB4 heterojunctions is also observed compared with individual TiB4 and MX monolayers. By applying in-plane biaxial strain, the transformation of MX/TiB4 heterojunctions from a Schottky contact to an Ohmic contact can also be realized. Our findings could offer valuable candidate materials and guidance for the design of the next generation of nanodevices with high electronic and optical performances.

7.
Discov Nano ; 19(1): 89, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758502

RESUMEN

In this study, a simple route for the synthesis of hierarchical W18O49 assembled by nanowires is reported. The morphologies and formation of W18O49 single-crystal could be controlled by changing the concentration of WCl6-ethanol solution. This synthesis strategy has the advantages that the hierarchical W18O49 microspheres could be economic synthesized at 180 °C without adding additives. Furthermore, efficient optical absorption properties in ultraviolet, visible and near-infrared region were obtained for the hierarchical W18O49 microspheres comparing with nanowires. These results will further promote the research of tungsten-based oxide nanomaterials.

8.
Molecules ; 29(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38731632

RESUMEN

This manuscript details a comprehensive investigation into the synthesis, structural characterization, thermal stability, and optical properties of nickel-containing hybrid perovskites, namely CH3NH3NiCl3, CsNiCl3, and CH3NH3NiBrCl2. The focal point of this study is to unravel the intricate crystal structures, thermal behaviors, and optical characteristics of these materials, thereby elucidating their potential application in energy conversion and storage technologies. X-ray powder diffraction measurements confirm that CH3NH3NiCl3 adopts a crystal structure within the Cmcm space group, while CsNiCl3 is organized in the P63/mmc space group, as reported previously. Such structural diversity underscores the complex nature of these perovskites and their potential for tailored applications. Thermal analysis further reveals the stability of CH3NH3NiCl3 and CH3NH3NiBrCl2, which begin to decompose at 260 °C and 295 °C, respectively. The optical absorption properties of these perovskites studied by UV-VIS-NIR spectroscopy revealed the bands characteristic of Ni2+ ions in an octahedral environment. Notably, these absorption bands exhibit subtle shifts upon bromide substitution, suggesting that optical properties can be finely tuned through halide modification. Such tunability is paramount for the design and development of materials with specific optical requirements. By offering a detailed examination of these properties, the study lays the groundwork for future advancements in material science, particularly in the development of innovative materials for sustainable energy technologies.

9.
Bioengineering (Basel) ; 11(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38671755

RESUMEN

This work reports the modification in the homogeneity of ablation effects with the assistance of nonlinear optical phenomena exhibited by C. albicans ATCC 10231, forming a biofilm. Equivalent optical energies with different levels of intensity were irradiated in comparative samples, and significant changes were observed. Nanosecond pulses provided by an Nd:YAG laser system at a 532 nm wavelength in a single-beam experiment were employed to explore the photodamage and the nonlinear optical transmittance. A nonlinear optical absorption coefficient -2 × 10-6 cm/W was measured in the samples studied. It is reported that multiphotonic interactions can promote more symmetric optical damage derived by faster changes in the evolution of fractional photoenergy transference. The electrochemical response of the sample was studied to further investigate the electronic dynamics dependent on electrical frequency, and an electro-capacitive behavior in the sample was identified. Fractional differential calculations were proposed to describe the thermal transport induced by nanosecond pulses in the fungi media. These results highlight the nonlinear optical effects to be considered as a base for developing photothermally activated phototechnology and high-precision photodamage in biological systems.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124267, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643560

RESUMEN

To safeguard the environment, it is crucial to monitor the emissions of nitrogen oxide (NO) and sulfur dioxide (SO2), harmful pollutants generated during fossil fuel combustion in industries. However, accurately measuring ultra-low concentrations of SO2 and NO remains a challenge. In this study, we developed an optical measurement system based on ultraviolet differential optical absorption spectroscopy (UV-DOAS) to address this issue. The 200-230 nm cross-sensitivity band was chosen for SO2 and NO. Experimental data with a mixed gas concentration range of 1-25 ppm for SO2 and NO was utilized. We proposed a fast algorithm based on Bi-directional Long Short-Term Memory (Bi-LSTM) to extract the differential optical density, overcoming the mutual interference between SO2 and NO. A nonlinear calibration model was employed to invert the separated differential absorption spectra and determine the gas concentrations. The results demonstrated a detection limit (DL) of 0.27 ppm and a full-scale error of 3.15 % for SO2, while for NO, the DL was 0.32 ppm and the full-scale error was 2.81 %. The uncertainties in SO2 and NO detection were calculated as 1.73 % and 1.96 %, respectively.

11.
Small Methods ; : e2301709, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678540

RESUMEN

Robust synthesis of ultrafine metal nanoparticles (ufMNPs) below 5 nm with clean surfaces and strong optical absorption in the visible spectral range is challenging due to their instability originating from large surface-to-volume ratios. This work reports a general strategy involving two sequential steps: i) loading metal precursor ions onto the surface of silica nanospheres (SiOx NSs) by forming a uniform coating of metal oxyhydroxide [MOy(OH)z] through preferred surface acid-base reactions and ii) thermally reducing MOy(OH)z in forming gas at elevated temperatures to form ufMNPs evenly dispersed on the surface of SiOx NSs. The capability of this synthesis strategy is verified by loading ufMNPs of various transition metals and bimetallic combinations onto the SiOx NSs. The ufMNPs exhibit strong optical absorption enhanced by the optical scattering resonances in the SiOx NSs, which generate intense electric fields near the surface of the SiOx NSs. The SiOx NSs also support stabilizing the ufMNPs, which do not need additional organic capping reagents. The successful synthesis of SiOx-NS-supported ufMNPs with clean surfaces and enhanced optical absorption is promising for exploring the photocatalytic properties of ufMNPs.

12.
Sci Total Environ ; 930: 172672, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663628

RESUMEN

Nitroaromatic compounds (NACs) are important nitrogen organics in aerosol with strong light-absorbing and chemically reactive properties. In this study, NACs in six Chinese megacities, including Harbin (HB), Beijing (BJ), Xi'an (XA), Wuhan (WH), Chengdu (CD), and Guangzhou (GZ), were investigated for understanding their sources, gas-particle partitioning, and impact on BrC absorption properties. The concentrations of ΣNACs in PM2.5 in the six cities ranged from 9.15 to 158.8 ng/m3 in winter and from 2.02 to 9.39 ng/m3 in summer. Nitro catechols (NCs), nitro phenols (NPs), and nitro salicylic acids (NSAs) are the main components in ΣNACs, with NCs being dominant in particulate phase and NPs being dominant in the gas phase. Correlation analysis between different pollutant species revealed that coal and biomass combustions were the major sources of NACs in the northern cities during wintertime, while secondary formation dominated NACs in the southern cities during summertime. The contribution of ΣNACs to brown carbon (BrC) light absorption ranged from 0.85 to 7.98 % during the wintertime and 2.07-6.44 % during the summertime. The mass absorption efficiency at 365 nm (MAE365) were highest for 4-nitrocatechol (4NC, 17.4-89.0 m2/g), 4-methyl-5-nitrocatechol (4M5NC, 15.0-76.9 m2/g), and 4-nitroguaiacol (4NG, 11.7-59.8 m2/g). The formation of NCs and NG through oxidation and nitration of catechol and guaiacol led to a significant increase in aerosol light absorption. In contrast, NPs and NSAs formed by the photonitration and photooxidation in liquid phase showed high polarity but low light absorption ability, and the proportions of (NPs + NSAs) in the light absorption of ΣNACs were lower than 15.3 % in the six megacities.

13.
Sci Total Environ ; 926: 171820, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513857

RESUMEN

Atmospheric brown carbon (BrC) aerosols were investigated at two urban sites in southern (Hefei) and northern (Shijiazhuang) China during summer and winter of 2019-2020 to explore regional variability in their compositional and optical properties. Organic matter in ambient PM2.5 samples were characterized at molecular level using ultrahigh performance liquid chromatography coupled with a diode array detector and an Orbitrap mass spectrometer. Although the molecular composition of organic aerosols varied substantially over different ambient environments, they were mainly composed by CHO and CHON species in positive ionization mode while CHO and CHOS species in negative mode. The mass absorption coefficients of BrC aerosols at wavelength range 250-450 nm were relatively higher for winter samples in both cities and for Shijiazhuang samples in both seasons, partly attributed to the higher concentration levels of anthropogenic air pollutants in these environments. The absorption Ångström exponents further revealed that BrC aerosols in winter seasons and in Shijiazhuang had a greater capacity of absorption at shorter wavelengths. A total of 26 BrC species with strong absorption were unambiguously identified from different environments, which mainly consisted of CHO, CHON, and CHN species and had higher degrees of unsaturation and lower degrees of oxidation. The presence and abundance of these BrC species varied dynamically across the seasons and cities, with a greater number of species presented in the winter of Shijiazhuang. The BrC species together contributed 12-26 % in the total absorbance of light-absorbing organic components at 250-450 nm. This study highlights the regional differences in BrC properties influenced by the sources and atmospheric processes, which should be taken into account to assess their climate impacts.

14.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478994

RESUMEN

The geometric structure of the BAs/WTe2heterojunction was scrutinized by employingab initiocalculations grounded on density functional theory. Multiple configurations are constructed to determine the equilibrium state of the heterojunction with optimal stability. The results show that the H1-type heterojunction with interlayer distance of 3.92 Å exhibits exceptional stability and showcases a conventional Type-II band alignment, accompanied by a direct band gap measuring 0.33 eV. By applying external electric field and introducing strain, one can efficaciously modulate both the band gap and the quantity of charge transfer in the heterojunction, accompanied by the transition of band alignment from Type-II to Type-I, which makes it expected to achieve broader applications in light-emitting diodes, laser detectors and other fields. Ultimately, the heterojunction undergoes a transformation from a semiconducting to a metallic state. Furthermore, the outstanding optical characteristics inherent to each of the two monolayers are preserved, the BAs/WTe2heterojunction also serves to enhance the absorption coefficient and spectral range of the material, particularly within the ultraviolet spectrum. It merits emphasis that the optical properties of the BAs/WTe2heterojunction are capable of modification through the imposition of external electric fields and mechanical strains, which will expand its applicability and potential for future progression within the domains of nanodevices and optoelectronic apparatus.

15.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484393

RESUMEN

The van der Waals (vdW) heterostructures of Z-scheme PbI2/g-C3N4with an indirect bandgap have gained much attention in recent years due to their unique properties and potential applications in various fields. However, the optoelectronic characteristics and strain-modulated effects are not yet fully understood. By considering this, six stacking models of PbI2/g-C3N4are proposed and the stablest structure is selected for further investigation. The uniaxial and biaxial strains (-10%-10%) regulated band arrangement, charge distribution, optical absorption in the framework of density functional theory are systematically explored. The compressive uniaxial strain of -8.55% changes the band type from II→I, and the biaxial strains of -7.12%, -5.25%, 8.91% change the band type in a way of II→I→II→I, acting like the 'band-pass filter'. The uniaxial strains except -10% compressive strain, and the -6%, -4%, 2%, 4%, 10% biaxial strains will enhance the light absorption of PbI2/g-C3N4. The exerted strains on PbI2/g-C3N4generate different power conversion efficiency (ηPCE) values ranging from 3.64% to 25.61%, and the maximumηPCEis generated by -6% biaxial strain. The results of this study will pave the way for the development of new electronic and optoelectronic materials with customized properties in photocatalytic field and optoelectronic devices.

16.
Appl Spectrosc ; 78(6): 644-649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378011

RESUMEN

Thermal lens spectroscopy (TLS) is a high-sensitivity method to determine the concentration of light-absorbing species in samples. Here, we implemented a transient configuration of the technique, with a focused pump and a collimated probe beam coaxially propagating. A Fabry-Perot optical resonator is incorporated allowing multi-passing of the probe beam through the sample to enhance sensitivity. We show how the low detection limit of the method can be reduced approximately by half by making differential measurements of the signal at a far field in the center point of the probe beam spot and that obtained by spatial filtering of the same beam, the so-called eclipsed signal. Measurements were performed in test samples of Deyman's organic dye, Strawberry 2143 v.7, dissolved in ethanol. The thermal lens signal measured as a function of the dye concentration in water at the center of the beam was compared with the differential signal resulting from this and the eclipsed beam.

17.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251132

RESUMEN

We perform numerical modeling of the optical absorption spectra of metamaterials composed of systems of semimetal antimony nanoparticles embedded into AlxGa1-xAs semiconductor matrices. We reveal a localized surface plasmon resonance (LSPR) in these metamaterials, which results in a strong optical extinction band below, near, or above the direct band gap of the semiconductor matrices, depending on the chemical composition of the solid solutions. We elucidate the role of dielectric losses in AlxGa1-xAs, which impact the LSPR and cause non-plasmonic optical absorption. It appears that even a dilute system of plasmonic Sb nanoinclusions can substantially change the optical absorption spectra of the medium.

18.
J Phys Condens Matter ; 36(19)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38286016

RESUMEN

The assembly of van der Waals (vdW) heterostructure with easily regulated electronic properties provides a new way for the expansion of two-dimensional materials and promotes the development of optoelectronics, sensors, switching devices and other fields. In this work, a systematic investigation of the electronic properties of MoGe2N4/SiC heterostructures using density functional theory has been conducted, along with the modulation of electronic properties by vertical strain and the potential application prospects in optoelectronic devices. The results show that MoGe2N4/SiC heterostructure has excellent dynamic and thermal stability and belongs to type-II band alignment semiconductors. This is extremely beneficial for the separation of photo-generating electron-hole pairs, so it has important significance for the development of photovoltaic materials. In addition, under the control of vertical strain, the semiconductor-metal transition occurs in the MoGe2N4/SiC heterostructure when the compressive strain reaches 6%. In the case of compressive strain less than 6% and tensile strain, the MoGe2N4/SiC heterostructure maintains the type-II band alignment semiconductor characteristics. Meanwhile, we find that the MoGe2N4/SiC heterostructure has optical absorption coefficients of up to 105in the visible and ultraviolet light ranges, which can improve the absorption coefficients of the MoGe2N4and SiC monolayer in some visible light regions. Finally, the optical conductivity of the MoGe2N4/SiC heterostructure exhibits significant anisotropy, with the armchair direction displaying higher conductivity within the orange light range. In conclusion, the formation of vdW heterostructure by vertically stacking MoGe2N4and SiC monolayers can effectively improve their electronic and optical properties, which provides a valuable reference for the future development of electronic devices and photovoltaic materials.

19.
Nanotechnology ; 35(17)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38266307

RESUMEN

In this work, we have studied the multi-photon excited photoluminescence from metal nanoclusters (NCs) of Au, Ag and Pt embedded in Al2O3matrix by ion implantation. The thermal annealing process allows to obtain a system composed of larger plasmonic metal nanoparticles (NPs) surrounded by photoluminescent ultra-small metal NCs. By exciting at 1064 nm, visible emission, ranging from 450 to 800 nm, was detected. The second and fourth-order nature of the multiphoton process was verified in a power-dependent study measured for each sample below the damage threshold. Experiments show that Au and Ag NCs exhibit a four-fold enhanced multiphoton excited photoluminescence with respect to that observed for Pt NCs, which can be explained as a result of a plasmon-mediated near-field process that is of less intensity for Pt NPs. These findings provide new opportunities to combine plasmonic nanoparticles and photoluminescent nanoclusters inside a robust inorganic matrix to improve their optical properties. Plasmon-enhanced multiphoton excited photoluminescence from metal nanoclusters may find potential application as ultrasmall fluorophores in multiphoton sensing, and in the development of solar cells with highly efficient energy conversion modules.

20.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38202564

RESUMEN

We reveal the feasibility of the localized surface plasmon resonance in a system of Bi nanoparticles embedded into an AlxGa1-xAs semiconductor matrix. With an ab initio determined dielectric function for bismuth and well-known dielectric properties of AlxGa1-xAs solid solution, we performed calculations of the optical extinction spectra for such metamaterial using Mie's theory. The calculations demonstrate a strong band of the optical extinction using the localized surface plasmons near a photon energy of 2.5 eV. For the semiconducting matrices with a high aluminum content x>0.7, the extinction by plasmonic nanoparticles plays the dominant role in the optical properties of the medium near the resonance photon energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA