Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
J Hand Surg Glob Online ; 6(5): 722-739, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39381397

RESUMEN

The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.

2.
Adv Healthc Mater ; : e2402132, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263839

RESUMEN

Dye-based fluorescent organic nanoparticles are a specific class of nanoparticles obtained by nanoprecipitation in water of pure dyes only. While the photophysical and colloidal properties of the nanoparticles strongly depend on the nature of the aggregated dyes, their excellent brightness in the visible and in the near infrared make these nanoparticles a unique and versatile platform for in vivo application. This article examines the promising utilization of these nanoparticles for in vivo optogenetics applications. Their photophysical properties as well as their biocompatibility and their capacity to activate Chrimson opsin in vivo through the fluorescence reabsorption process are demonstrated. Additionally, an illustrative example of employing these nanoparticles in fear reduction in mice through closed-loop stimulation is presented. Through an optogenetic methodology, the nanoparticles demonstrate an ability to selectively manipulate neurons implicated in the fear response and diminish the latter. Dye-based fluorescent organic nanoparticles represent a promising and innovative strategy for optogenetic applications, holding substantial potential in the domain of translational neuroscience. This work paves the way for novel therapeutic modalities for neurological and neuropsychiatric disorders.

3.
Front Endocrinol (Lausanne) ; 15: 1449326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286269

RESUMEN

Background: The part played by oxytocin and oxytocin neurons in the regulation of food intake is controversial. There is much pharmacological data to support a role for oxytocin notably in regulating sugar consumption, however, several recent experiments have questioned the importance of oxytocin neurons themselves. Methods: Here we use a combination of histological and chemogenetic techniques to investigate the selective activation or inhibition of oxytocin neurons in the hypothalamic paraventricular nucleus (OxtPVH). We then identify a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis using the cell-selective expression of channel rhodopsin. Results: OxtPVH neurons increase their expression of cFos after both physiological (fast-induced re-feeding or oral lipid) and pharmacological (systemic administration of cholecystokinin or lithium chloride) anorectic signals. Chemogenetic activation of OxtPVH neurons is sufficient to decrease free-feeding in Oxt Cre:hM3Dq mice, while inhibition in Oxt Cre:hM4Di mice attenuates the response to administration of cholecystokinin. Activation of OxtPVH neurons also increases energy expenditure and core-body temperature, without a significant effect on locomotor activity. Finally, the selective, optogenetic stimulation of a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis reduces the consumption of sucrose. Conclusion: Our results support a role for oxytocin neurons in the regulation of whole-body metabolism, including a modulatory action on food intake and energy expenditure. Furthermore, we demonstrate that the pathway from OxtPVH neurons to the bed nucleus of the stria terminalis can regulate sugar consumption.


Asunto(s)
Ingestión de Energía , Metabolismo Energético , Neuronas , Oxitocina , Núcleo Hipotalámico Paraventricular , Núcleos Septales , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleos Septales/metabolismo , Núcleos Septales/fisiología , Ratones , Neuronas/metabolismo , Masculino , Sacarosa/farmacología , Ratones Transgénicos , Ratones Endogámicos C57BL , Ingestión de Alimentos/fisiología
4.
ACS Synth Biol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312764

RESUMEN

Drosophila melanogaster (fruit fly) is an animal model chassis in biological and genetic research owing to its short life cycle, ease of cultivation, and acceptability to genetic modification. While the D. melanogaster chassis offers valuable insights into drug efficacy, toxicity, and mechanisms, several obvious challenges such as dosage control and drug resistance still limit its utility in pharmacological studies. Our research combines optogenetic control with engineered gut bacteria to facilitate the precise delivery of therapeutic substances in D. melanogaster for biomedical research. We have shown that the engineered bacteria can be orally administered to D. melanogaster to get a stable density of approximately 28,000 CFUs/per fly, leading to no detectable negative effects on the growth of D. melanogaster. In a model of D. melanogaster exposure to heavy metal, these orally administered bacteria uniformly express target genes under green light control to produce MtnB protein for binding and detoxifying lead, which significantly reduces the level of oxidative stress in the intestinal tract of Pb-treated flies. This pioneering study lays the groundwork for using optogenetic-controlled bacteria in the model chassis D. melanogaster to advance biomedical applications.

5.
Neurochem Res ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312079

RESUMEN

The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.

6.
Bioengineering (Basel) ; 11(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39199779

RESUMEN

The brain-computer interface (BCI) is one of the most powerful tools in neuroscience and generally includes a recording system, a processor system, and a stimulation system. Optogenetics has the advantages of bidirectional regulation, high spatiotemporal resolution, and cell-specific regulation, which expands the application scenarios of BCIs. In recent years, optogenetic BCIs have become widely used in the lab with the development of materials and software. The systems were designed to be more integrated, lightweight, biocompatible, and power efficient, as were the wireless transmission and chip-level embedded BCIs. The software is also constantly improving, with better real-time performance and accuracy and lower power consumption. On the other hand, as a cutting-edge technology spanning multidisciplinary fields including molecular biology, neuroscience, material engineering, and information processing, optogenetic BCIs have great application potential in neural decoding, enhancing brain function, and treating neural diseases. Here, we review the development and application of optogenetic BCIs. In the future, combined with other functional imaging techniques such as near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), optogenetic BCIs can modulate the function of specific circuits, facilitate neurological rehabilitation, assist perception, establish a brain-to-brain interface, and be applied in wider application scenarios.

7.
J Biol Chem ; 300(9): 107636, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122007

RESUMEN

In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.


Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias , Optogenética , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química , Humanos , Optogenética/métodos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Relación Estructura-Actividad , Animales , Calcio/metabolismo , Retículo Endoplásmico/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-39095328

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. METHODS: Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant self-administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. RESULTS: We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. CONCLUSIONS: Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.

9.
Neurophotonics ; 11(2): 024210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38948888

RESUMEN

Significance: The choroid plexus (ChP) epithelial network displays diverse dynamics, including propagating calcium waves and individuated fluctuations in single cells. These rapid events underscore the possibility that ChP dynamics may reflect behaviorally relevant and clinically important changes in information processing and signaling. Optogenetic and chemogenetic tools provide spatiotemporally precise and sustained approaches for testing such dynamics in vivo. Here, we describe the feasibility of a novel combined opto- and chemogenetic tool, BioLuminescent-OptoGenetics (BL-OG), for the ChP in vivo. In the "LuMinOpsin" (LMO) BL-OG strategy, a luciferase is tethered to an adjacent optogenetic element. This molecule allows chemogenetic activation when the opsin is driven by light produced through luciferase binding a small molecule (luciferin) or by conventional optogenetic light sources and BL-OG report of activation through light production. Aim: To test the viability of BL-OG/LMO for ChP control. Approach: Using transgenic and Cre-directed targeting to the ChP, we expressed LMO3 (a Gaussia luciferase-VChR1 fusion), a highly effective construct in neural systems. In mice expressing LMO3 in ChP, we directly imaged BL light production following multiple routes of coelenterazine (CTZ: luciferin) administration using an implanted cannula system. We also used home-cage videography with Deep LabCut analysis to test for any impact of repeated CTZ administration on basic health and behavioral indices. Results: Multiple routes of CTZ administration drove BL photon production, including intracerebroventricular, intravenous, and intraperitoneal injection. Intravenous administration resulted in fast "flash" kinetics that diminished in seconds to minutes, and intraperitoneal administration resulted in slow rising activity that sustained hours. Mice showed no consistent impact of 1 week of intraperitoneal CTZ administration on weight, drinking, motor behavior, or sleep/wake cycles. Conclusions: BL-OG/LMO provides unique advantages for testing the role of ChP dynamics in biological processes.

10.
Front Neurosci ; 18: 1415575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010943

RESUMEN

Age-related macular degeneration (AMD) is a growing public health concern given the aging population and it is the leading cause of blindness in developed countries, affecting individuals over the age of 55 years. AMD affects the retinal pigment epithelium (RPE) and Bruch's membrane in the macula, leading to secondary photoreceptor degeneration and eventual loss of central vision. Late AMD is divided into two forms: neovascular AMD and geographic atrophy (GA). GA accounts for around 60% of late AMD and has been the most challenging subtype to treat. Recent advances include approval of new intravitreally administered therapeutics, pegcetacoplan (Syfovre) and avacincaptad pegol (Iveric Bio), which target complement factors C3 and C5, respectively, which slow down the rate of enlargement of the area of atrophy. However, there is currently no treatment to reverse the central vision loss associated with GA. Optogenetics may provide a strategy for rescuing visual function in GA by imparting light-sensitivity to the surviving inner retina (i.e., retinal ganglion cells or bipolar cells). It takes advantage of residual inner retinal architecture to transmit visual stimuli along the visual pathway, while a wide range of photosensitive proteins are available for consideration. Herein, we review the anatomical changes in GA, discuss the suitability of optogenetic therapeutic sensors in different target cells in pre-clinical models, and consider the advantages and disadvantages of different routes of administration of therapeutic vectors.

11.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044298

RESUMEN

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Asunto(s)
Depresión , Hipocampo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Transducción de Señal , Animales , Masculino , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Paroxetina/farmacología , Paroxetina/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Transducción de Señal/efectos de los fármacos
12.
Cell Rep ; 43(7): 114470, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985682

RESUMEN

The importance of visual cues for navigation and goal-directed behavior is well established, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the medial entorhinal cortex (MEC), which receives direct projections from neocortical visual areas, including the retrosplenial cortex (RSC). Here, we perform high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assess the dynamics of sensory-evoked activity. We find that a large fraction of neurons exhibit robust responses to visual input. Visually responsive cells are located primarily in layer 3 of the dorsal MEC and can be separated into subgroups based on functional and molecular properties. Furthermore, optogenetic suppression of RSC afferents within the MEC strongly reduces visual responses. Overall, our results demonstrate that the MEC can encode simple visual cues in the environment that may contribute to neural representations of location necessary for accurate navigation.


Asunto(s)
Corteza Entorrinal , Animales , Corteza Entorrinal/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Optogenética , Señales (Psicología)
13.
Cell Rep ; 43(7): 114461, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990719

RESUMEN

The quantal content of an evoked postsynaptic response is typically determined by dividing it by the average spontaneous miniature response. However, this approach is challenged by the notion that different synaptic vesicle pools might drive spontaneous and evoked release. Here, we "silence" synaptic vesicles through pharmacological alkalinization and subsequently rescue them by optogenetic acidification. We find that such silenced synaptic vesicles, retrieved during evoked or spontaneous activity, cross-deplete the complementary release mode in a fully reversible manner. A fluorescently tagged version of the endosomal SNARE protein Vti1a, which has been suggested to identify a separate pool of spontaneously recycling synaptic vesicles, is trafficked to synaptic vesicles significantly only upon overexpression but not when endogenously tagged by CRISPR-Cas9. Thus, both release modes draw synaptic vesicles from the same readily releasable pool.


Asunto(s)
Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Animales , Transmisión Sináptica , Ratas , Optogenética
14.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826205

RESUMEN

Whole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions. In this study, we used optogenetic-fMRI in rats to investigate the impact of LC stimulation on the global signal and three primary spatiotemporal patterns. We report small, spatially specific changes in global signal distribution as a result of tonic LC stimulation, as well as regional changes in spatiotemporal patterns of activity at 5 Hz tonic and 15 Hz phasic stimulation. We also found that LC stimulation had little to no effect on the spatiotemporal patterns detected by complex principal component analysis. These results show that the effects of LC activity on the BOLD signal in rats may be small and regionally concentrated, as opposed to widespread and globally acting.

15.
Elife ; 122024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941139

RESUMEN

Homeostatic plasticity represents a set of mechanisms that are thought to recover some aspect of neural function. One such mechanism called AMPAergic scaling was thought to be a likely candidate to homeostatically control spiking activity. However, recent findings have forced us to reconsider this idea as several studies suggest AMPAergic scaling is not directly triggered by changes in spiking. Moreover, studies examining homeostatic perturbations in vivo have suggested that GABAergic synapses may be more critical in terms of spiking homeostasis. Here, we show results that GABAergic scaling can act to homeostatically control spiking levels. We found that perturbations which increased or decreased spiking in cortical cultures triggered multiplicative GABAergic upscaling and downscaling, respectively. In contrast, we found that changes in AMPA receptor (AMPAR) or GABAR transmission only influence GABAergic scaling through their indirect effect on spiking. We propose that GABAergic scaling represents a stronger candidate for spike rate homeostat than AMPAergic scaling.


Asunto(s)
Potenciales de Acción , Receptores AMPA , Receptores AMPA/metabolismo , Animales , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Plasticidad Neuronal/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Transmisión Sináptica/fisiología , Células Cultivadas , Ácido gamma-Aminobutírico/metabolismo , Homeostasis
16.
Fundam Res ; 4(1): 188-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933843

RESUMEN

Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.

17.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230227, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853560

RESUMEN

Memories are thought to be stored within sparse collections of neurons known as engram ensembles. Neurons active during a training episode are allocated to an engram ensemble ('engram neurons'). Memory retrieval is initiated by external sensory or internal cues present at the time of training reactivating engram neurons. Interestingly, optogenetic reactivation of engram ensemble neurons alone in the absence of external sensory cues is sufficient to induce behaviour consistent with memory retrieval in mice. However, there may exist differences between the behaviours induced by natural retrieval cues or artificial engram reactivation. Here, we compared two defensive behaviours (freezing and the syllable structure of ultrasonic vocalizations, USVs) induced by sensory cues present at training (natural memory retrieval) and optogenetic engram ensemble reactivation (artificial memory retrieval) in a threat conditioning paradigm in the same mice. During natural memory recall, we observed a strong positive correlation between freezing levels and distinct USV syllable features (characterized by an unsupervised algorithm, MUPET (Mouse Ultrasonic Profile ExTraction)). Moreover, we observed strikingly similar behavioural profiles in terms of freezing and USV characteristics between natural memory recall and artificial memory recall in the absence of sensory retrieval cues. Although our analysis focused on two behavioural measures of threat memory (freezing and USV characteristics), these results underscore the similarities between threat memory recall triggered naturally and through optogenetic reactivation of engram ensembles. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Recuerdo Mental , Optogenética , Animales , Ratones , Recuerdo Mental/fisiología , Masculino , Ratones Endogámicos C57BL , Señales (Psicología) , Neuronas/fisiología , Memoria/fisiología , Vocalización Animal/fisiología , Miedo/fisiología
18.
Mol Pain ; 20: 17448069241261687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818803

RESUMEN

Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were well accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.


Asunto(s)
Frío , Hiperalgesia , Oxaliplatino , Animales , Oxaliplatino/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones , Conducta Animal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Compuestos Organoplatinos/efectos adversos , Dimensión del Dolor/métodos , Dolor Facial/inducido químicamente , Dolor Facial/fisiopatología
19.
Neurosci Biobehav Rev ; 163: 105743, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821151

RESUMEN

Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.


Asunto(s)
Ácido gamma-Aminobutírico , Animales , Humanos , Ácido gamma-Aminobutírico/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Conducta Alimentaria/fisiología , Vías Nerviosas/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Apetito/fisiología
20.
Chin J Integr Med ; 30(8): 692-700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733455

RESUMEN

OBJECTIVE: To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS: Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS: Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION: Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.


Asunto(s)
Antidepresivos , Ácido Glutámico , Hipocampo , Ratones Endogámicos C57BL , Transmisión Sináptica , Animales , Femenino , Antidepresivos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Animal/efectos de los fármacos , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Extractos Vegetales/farmacología , Estrés Psicológico/tratamiento farmacológico , Depresión/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA