Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
mSphere ; 8(6): e0046023, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37847028

RESUMEN

IMPORTANCE: Neurospora is a quintessential tip-growing organism, which is well known for packaging and longitudinal transport of tip-building blocks. Thus far, however, little attention has been paid to the co-essential process of reclamation, that is-taking apart of upstream, older structural elements, otherwise known as "autophagy". We are not yet prepared to set out the chemistry of that elaborate process, but its morphological start alone is worthy of attention. Carbon starvation triggers significant autophagic changes, beginning with prolific vacuolation along the plasma membrane, and eventual filling of 70% (or more) of cytoplasmic volume. Additionally, the Neurospora plasma membrane elaborates a variety of phagophores which themselves often look lytic. These have either dual enclosing membranes, like the familiar autophagosomes, can be doubled and have four wrapping membranes, or can be compounded with multiple membrane layers. These reclamation processes must be accommodated by the mechanism of tip growth.


Asunto(s)
Neurospora crassa , Neurospora crassa/metabolismo , Autofagia , Membrana Celular/metabolismo
2.
Autophagy ; 19(4): 1357-1358, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36037301

RESUMEN

Autophagy (i.e. macroautophagy) plays a significant role in the replication of hepatitis B virus (HBV). In our recent study, we examined the underlying mechanism and discovered that autophagic membranes participated in different steps of the HBV life cycle. We found that phagophores are involved in the assembly of HBV nucleocapsids, autophagosomes participate in the trafficking of HBV nucleocapsids, amphisomes likely participate in the maturation and egress of mature HBV particles, and autolysosomes negatively regulate HBV replication. Our work provides important insights for understanding the relationship between autophagic membranes and HBV replication and raises the possibility of targeting the autophagic pathway for the development of novel drugs against HBV.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/fisiología , Autofagia , Replicación Viral/fisiología , Autofagosomas/metabolismo , Hepatitis B/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(30): e2201927119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858426

RESUMEN

Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.


Asunto(s)
Autofagosomas , Virus de la Hepatitis B , Nucleocápside , Empaquetamiento del Genoma Viral , Replicación Viral , Autofagosomas/fisiología , ADN Viral/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Nucleocápside/genética , Nucleocápside/fisiología , Transporte de Proteínas , ARN Viral/metabolismo , Replicación Viral/genética
4.
DNA Cell Biol ; 37(4): 287-290, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29350547

RESUMEN

Macroautophagy, hereafter autophagy, is a catabolic process that is important for maintaining cellular homeostasis. It can also be used by cells to remove intracellular microbial pathogens. However, the studies on hepatitis C virus (HCV) in recent years indicated that this virus could regulate this cellular pathway and use it to enhance its replication. HCV could temporally control the autophagic flux and use the autophagic membranes for the assembly of its RNA replication complex. In this report, we will discuss the biogenesis of autophagosomes induced by HCV and how HCV uses this autophagic pathway for its RNA replication.


Asunto(s)
Autofagia/fisiología , Hepacivirus/metabolismo , ARN Viral/fisiología , Autofagosomas , Autofagia/inmunología , Replicación del ADN , Hepacivirus/patogenicidad , Humanos , Fagosomas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA