Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.774
Filtrar
1.
Phytother Res ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363549

RESUMEN

Mentha aquatica L., or water mint, is an important member of the Mentha genus, and has long been used in traditional medicine, mainly to treat respiratory diseases such as the common cold. Nevertheless, although over the years many studies have shown that it's potential grows beyond this use, a review that highlights M. aquatica L.'s true potential is still lacking. Thus, the main purpose of the present article is to provide a thorough and multidisciplinary critical review of M. aquatica L., including its phytochemical characterization, main bioactivities, and current marketed cosmetic products. Many compounds have been identified as part of M. aquatica L. composition, such as terpenes, phenolic acids, phenols, and terpenoids, which have been linked to a vast therapeutic potential, namely anti-inflammatory, antioxidant, antibacterial, antifungal, antiobesity, and hepatoprotection bioactivities, with additional anticancer potential for several types of tumors (breast, lung, and skin), and psycho and neuroactive potential in depression, or Alzheimer's or Parkinson's disease. Additionally, it has been proven to be suitable for cosmetic application since several cleansing, hydrating, protecting, and/or odor masking products containing it are already available, with the main functions attributed to M. aquatica including refreshing/cooling effects, calming/soothing/relaxing effects, and purifying effects, properties closely related to its anti-inflammatory and antioxidant bioactivities. Hence, M. aquatica is an extremely versatile plant, with its extracts and essential oils having great therapeutic and cosmetic potential. With many marketed cosmetic products, future studies should focus on this plant's medicinal aspects, so that 1 day it can be part of therapeutic regimens.

2.
Macromol Rapid Commun ; : e2400557, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388675

RESUMEN

Bisfunctional benzoxazine and polyether diamine-based polymers show Arrhenius-like stress-relaxation varying with stoichiometry and polymerization temperatures proving vitrimeric behavior. Molecular structural investigations reveal the presence of different aminoalkylated phenols occurring at varying ratios depending on polymer composition and polymerization conditions. The vitrimeric mechanism is found to involve an amine exchange reaction of aminoalkylated phenols in an equilibrium reaction like a nucleophilic substitution reaction. As determined by molecular studies and dissolution experiments in reactive solvents, aliphatic and aromatic primary as well as aliphatic secondary amines in the polybenzoxazine structure can act as nucleophiles in reaction with electrophilic methylene bridges. Thus, aminoalkylated phenols proved to be a relevant structural motif resulting in a vitrimeric polybenzoxazine due to amine exchange reaction.

3.
Angew Chem Int Ed Engl ; : e202417703, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380426

RESUMEN

Direct photocatalytic conversion of benzene to phenol with O2 is a green alternative to the traditional synthesis. The key is to find an effective photocatalyst to do the trick. Defect engineering of semiconductors with oxygen vacancies (OVs) is an emerging strategy for catalyst fabrication. OVs can trap electrons to promote charge separation and serving as adsorption sites for O2 activation. However, randomly distribution of OVs on the semiconductor surface often results in mismatching the charge carrier dynamics under irradiation, thus failing to fulfill the unique advantages of OVs for photoredox functions. Herein, we demonstrate that abundant OVs can be facilely generated and precisely located adjacent to the reductive sites on reducible oxide semiconductors such as tungsten oxide (WO3) via a simple photochemistry strategy. Such photoinduced OVs are well suited for photocatalytic benzene oxidation with O2 as they readily capture photogenerated electrons from the reductive sites of WO3 to activate adsorbed O2. 18O-labeling experiments further confirm that the OVs also facilitate the integration of oxygen atoms from O2 into phenol, revealing in detail the pathway for photocatalytic benzene hydroxylation. This study demonstrates that the photochemistry approach is an appealing strategy for the synthesis of high-performance OVs-rich photocatalysts for solar-induced chemical conversion.

4.
Sci Total Environ ; 954: 176710, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378932

RESUMEN

Adsorption of phenol onto acrylonitrile-divinylbenzene copolymer (AN-DVB) was comprehensively investigated with the aspect of kinetic, equilibrium, and thermodynamic. The effect of adsorbent dosage, initial concentration, temperature, and pH were studied in batch adsorption process. Maximum phenol adsorption capacity was obtained at neutral pH of phenol solution (6.8), at room temperature (25 °C) and at higher initial concentrations (500 mg/L) as 117 mg/g. After examining two-parameter- and three-parameter-adsorption-isotherm models, experimental data were represented well by using Freundlich adsorption isotherm model at neutral pH. Due to the all possible interactions like hydrogen bonding, π-π stacking and hydrophobic ineractions have different strengths and energetic values, phenol adsorption at neutral pH (6.8) exhibited a heterogeneous multilayer process. On the other hand, Langmuir and BET models well represented the experimental data obtained beyond neutral pH due to the weakening of different interactions, hence, multilayer but more uniform adsorption occurred. Phenol adsorption followed pseudo-second-order kinetic model that shows the surface interactions play significant role on the adsorption rate. Analysis of Boyd's intraparticle and external diffusion kinetic models indicated that in addition to surface interactions, diffusion also controlled the adsorption rate at room temperature. Activation energy was calculated as 92.99 kJ/mol, which shows the strong interaction between phenol and AN-DVB. Adsorption enthalpy change and entropy change was calculated as -25.731 kJ/mol and -0.041 kJ/molK, respectively. Thermodynamic parameters indicated that adsorption process was exothermic and spontaneous in nature.

5.
Chemistry ; : e202403301, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400927

RESUMEN

Phenols play a crucial role as core structural motifs in natural products and also serve as fundamental building blocks in synthetic chemistry. Apart from the known protocols for the conversion of aryl precursors to phenols (i.e., decarboxylative oxygenation), we report here the efficient synthesis of phenols from the stable and readily available benzylic carboxylic acids under mild reaction conditions. The photocatalytic conversion of carboxylic acids to peroxides is a crucial step in this strategy, allowing the subsequent C-O bond formation via Hock rearrangement.

6.
Fishes ; 9(7): 1-20, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39380839

RESUMEN

The in vitro biotransformation of phenol at 11 °C was studied using pre-spawn adult rainbow (Oncorhynchus mykiss) (RBT), brook (Salvelinus fontinalis) (BKT), and lake trout (Salvelinus namaycush) (LKT) hepatic microsomal preparations. The incubations were optimized for time, cofactor concentration, pH, and microsomal protein concentration. Formation of Phase I ring-hydroxylation and Phase II glucuronidation metabolites was quantified using HPLC with dual-channel electrochemical and UV detection. The biotransformation of phenol over a range of substrate concentrations (1 to 180 mM) was quantified, and the Michaelis-Menten kinetics constants, Km and Vmax, for the formation of hydroquinone (HQ), catechol (CAT), and phenylglucuronide (PG) were calculated. Species differences were noted in the Km values for Phase I enzyme production of HQ and CAT, with the following rank order of apparent enzyme affinity for substrate: RBT > BKT = LKT. However, no apparent differences in the Km for Phase II metabolism of phenol to PG were detected. Conversely, while there were no apparent differences in Vmax between species for HQ or CAT formation, the apparent maximum capacity for PG formation was significantly less in LKT than that observed for RBT and BKT. These experiments provide a means to quantify metabolic activation and deactivation of xenobiotics in fish, to compare activation and deactivation reactions across species, and to act as a guide for future predictions of new chemical biotransformation pathways and rates in fish. These experiments provided the necessary rate and capacity (Km and Vmax) inputs that are required to parameterize a fish physiologically based toxicokinetic (PB-TK) model for a reactive chemical that is readily biotransformed, such as phenol. In the future, an extensive database of these rate and capacity parameters on important fish species for selected chemical structures will be needed to allow the effective use of predictive models for reactive, biotransformation chemicals in aquatic toxicology and environmental risk assessment.

7.
Front Microbiol ; 15: 1442235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351301

RESUMEN

This study examined the phenol degradation capabilities and oxidative stress responses of Candida tropicalis SHC-03, demonstrating its metabolic superiority and resilience compared to Saccharomyces cerevisiae BY4742 in a culture medium with phenol as the sole carbon source. Through comparative growth, transcriptomic, and metabolomic analyses under different phenol concentrations, this study revealed C. tropicalis SHC-03's specialized adaptations for thriving in phenol as the sole carbon source environments. These include a strategic shift from carbohydrate metabolism to enhanced phenol degradation pathways, highlighted by the significant upregulation of genes for Phenol 2-monoxygenase and Catechol 1,2-dioxygenase. Despite phenol levels reaching 1.8 g/L, C. tropicalis exhibits a robust oxidative stress response, efficiently managing ROS through antioxidative pathways and the upregulation of genes for peroxisomal proteins like PEX2, PEX13, and PMP34. Concurrently, there was significant upregulation of genes associated with membrane components and transmembrane transporters, enhancing the cell's capacity for substance exchange and signal transduction. Especially, when the phenol concentration was 1.6 g/L and 1.8 g/L, the degradation rates of C. tropicalis towards it were 99.47 and 95.91%, respectively. Conversely, S. cerevisiae BY4742 shows limited metabolic response, with pronounced growth inhibition and lack of phenol degradation. Therefore, our study not only sheds light on the molecular mechanisms underpinning phenol tolerance and degradation in C. tropicalis but also positions this yeast as a promising candidate for environmental and industrial processes aimed at mitigating phenol pollution.

8.
Enzyme Microb Technol ; 181: 110519, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39369487

RESUMEN

Tyrosine phenol lyase (TPL) synthesises L-tyrosine derivatives from monophenols, pyruvate and ammonia. Production of such high-value aromatic chemicals from biomass-derived raw materials is of great interest. In this study, six monophenols (guaiacol, phenol, o-cresol, m-cresol, catechol and syringol) were chosen based on the structure of lignin and were studied as substrates in the enzymatic reaction. Single monophenol reactions (SMR) and binary monophenol reactions (BMR) with guaiacol were carried out. TPL-M379V was found to be selective towards guaiacol (84.5 % conv.). The highest single activity was measured towards phenol (93.9 % conv.). However, the enzyme preferred guaiacol over phenol in the BMRs. Syringol was found to be inert in the reaction, whereas catechol had an inhibitory effect on the enzymatic reaction, in addition to causing degradation of all the substrates in the medium. Doubling the guaiacol concentration in the SMR did not significantly increase the production of 3-O-methyldopa (conv. 45.9 %). However, in the binary reaction systems the total monophenol conversions were higher with guaiacol and phenol (total 62.4 %) or o-cresol (total 57.1 %). This indicates possible substrate/product specific inhibition. The study provides new data on activity, selectivity and inhibitory effects of monophenols in the synthetic reaction catalysed by TPL-M379V, especially in mixed-substrate reactions.

9.
J Bacteriol ; : e0028124, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235232

RESUMEN

In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors, including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments, such as the soil, and is frequently found in human wound and respiratory tract co-infections with other bacteria, including Staphylococcus aureus. Here, we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. Although active flagellar function was required for surface spreading, known motility regulators were not essential, indicating that surface spreading may be regulated by an as yet unknown mechanism. This motility was distinct from the response of most other motile bacterial species in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, "surfing," albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches. IMPORTANCE: Bacterial motility is an important determinant of bacterial fitness and pathogenesis, allowing expansion and invasion to access nutrients and adapt to new environments. Here, we demonstrate that secreted surfactants from a variety of foreign species, including other bacterial species, infection hosts, fungi, and plants, facilitate surface spreading motility in the opportunistic pathogen Pseudomonas aeruginosa that is distinct from established motility phenotypes. This response to foreign surfactants also occurs in Pseudomonas putida, but not in more distantly related bacterial species. Our systematic characterization of surfactant-based surface spreading shows that these interspecies surfactants serve as public goods to enable P. aeruginosa to move and explore environmental conditions when it would be otherwise immotile.

10.
Environ Health ; 23(1): 76, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300535

RESUMEN

BACKGROUND: Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). METHODS: During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. RESULTS: Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. CONCLUSION: Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.


Asunto(s)
Electrocardiografía , Fenoles , Humanos , Femenino , Masculino , Fenoles/orina , Persona de Mediana Edad , Adulto , Estudios Transversales , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/orina , Anciano , Corazón/efectos de los fármacos
11.
Water Res ; 266: 122382, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39298894

RESUMEN

Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.

12.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273268

RESUMEN

Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.


Asunto(s)
Acinetobacter , Genoma Bacteriano , Acinetobacter/metabolismo , Acinetobacter/genética , Modelos Biológicos , Carbono/metabolismo , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Fenoles/metabolismo , Biodegradación Ambiental , Antibacterianos/farmacología
13.
Nanomaterials (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39269114

RESUMEN

The uncontrolled use of antibiotics has led to a global problem of antimicrobial resistance. One of the main mechanisms of bacterial resistance is the formation of biofilms. In order to prevent the growth of antimicrobial resistance, it is crucial to develop new antibacterial agents that are capable of inhibiting the formation of biofilms. This makes this area of research highly relevant today. Promising candidates for these antibacterial agents are new bionanomaterials made from natural humic substances and silver nanoparticles. These substances have the potential to not only directly kill microorganisms but also penetrate biofilms and inhibit their formation. The goal of this study is to synthesize active pharmaceutical substances in the form of bionanomaterials, using ultradispersed silver nanoparticles in a matrix of coal humic substances, perform their characterization (NMR spectroscopy, TEM, and ICP-AES methods), and research their influence on biofilm formation in the most dangerous opportunistic pathogens (E. coli, Methicillin-resistant St. Aureus, K. pneumoniae, P. aeruginosa, St. aureus, A. baumannii, and K. Pneumonia). The results showed that all of the studied bionanomaterials had antibacterial activity against all of the opportunistic pathogens. Furthermore, they were found to have a suppressive effect on both pre-existing biofilms of these bacteria and their formation.

14.
J Pediatr Surg ; : 161934, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39307596

RESUMEN

OBJECTIVE: This study aims to evaluate the safety and efficacy of platelet-rich plasma (PRP) as an adjuvant to crystallized phenol (CP) in treating pediatric pilonidal sinus disease (PSD). METHODS: A single-center randomized controlled trial was conducted at Istanbul Esenyurt Hospital. Eighty-seven patients aged 0-18 were randomly assigned to two groups: the CP group (n = 42) and the CP + PRP group (n = 45). Upon arrival at the clinic, patients began a regimen of manual shaving and, if necessary, laser epilation every 6-8 weeks. For those with pilonidal abscesses, incision, drainage, and antibiotics were given. The treatment area was sterilized and numbed with local anesthesia. Hair removal and curettage were performed, followed by the application of crystallized phenol. In CP + PRP group, PRP injections were also administered. The procedure concluded with wound dressing and thorough disinfection. The study was registered https://clinicaltrials.gov/ (NCT06324656). RESULTS: The CP + PRP group demonstrated significantly shorter healing times (19.4 ± 7.88 days) compared to the CP group (30.7 ± 12.9 days) (p < 0.001). The cosmetic score was higher in the CP + PRP group (7.42 ± 1.61) than in the CP group (6.11 ± 1.88, p = 0.001). CP + PRP group had lower VAS scores at measured all-time points after applications (p < 0.05 for each). Complications were comparable between the groups, with no significant differences in bleeding, infections, or skin burns (p > 0.05 for each comparison). No difference was found between groups in terms of total complication rate (p = 0.398). The success rate was higher in CP + PRP group (98%; n = 44) compared to CP group (86%; n = 36) (p = 0.039). Recurrence rates were lower in CP + PRP group (2%; n = 1) than CP group (14%; n = 6) (p = 0.039). CONCLUSION: The autologous PRP injection in pediatric PSD is safe. The addition of PRP to CP treatment for pediatric PSD significantly improves healing time, cosmetic outcomes, and overall success rates without increasing complication rates. This combined approach offers a promising alternative for effective and efficient treatment of PSD in children. TYPE OF THE STUDY: Randomized controlled trial. LEVEL OF EVIDENCE: Level I.

15.
Microb Pathog ; 196: 106943, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288824

RESUMEN

Candida auris has emerged as a major multidrug-resistant nosocomial pathogen. The organism exhibits a persistent colonising phenotype, and causes recalcitrant infections often strongly linked to biofilm formation. Alternate strategies are urgently needed to combat this yeast and its biofilm-associated phenotype. This work aimed to evaluate the efficacy of select staphylococcal phenol soluble modulins (PSMs), namely, a truncated version of Staphylococcus aureus PSMα2 shortened by two amino acids at the N-terminal (SaΔ1Δ2PSMα2) and Staphylococcus epidermidis PSMδ against C. auris in vitro and in vivo. The antifungal and antibiofilm activity was tested by broth microdilution and XTT dye reduction assay. Combination effect with antifungal drugs was determined by fractional inhibitory concentration test. The efficacy of combination therapy using SaΔ1Δ2PSMα2 with amphotericin B or caspofungin was evaluated in murine model of C. auris catheter-associated infection. Based on antifungal activity, antibiofilm activity and cytotoxicity data, SaΔ1Δ2PSMα2 exhibited promising activity against C. auris biofilms. Nearly 50 % inhibition in biofilm formation was noted with 0.5-2 µM of the peptide against multiple clinical and C. auris colonizing isolates. It was synergistic with amphotericin B (ΣFIC = 0.281) and caspofungin (ΣFIC = 0.047) in vitro, and improved the activity of voriconazole in voriconazole-resistant C. auris. Combination therapy using amphotericin B or caspofungin (1 µg/ml) with SaΔ1Δ2PSMα2 resulted in 99.5 % reduction in C. auris biofilm in murine model, even when the peptide was used at a concentration that was neither fungicidal nor antibiofilm (0.125 µM; ≈0.26 µg/ml). The study provides insight into the potential utility of SaΔ1Δ2PSMα2-antifungal drug combination against C. auris biofilm-associated infections.

16.
Toxicol Rep ; 13: 101717, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39280992

RESUMEN

The current study investigates the severe effects of commonly employed chemicals, such as phenol, on the freshwater bottom-dwelling annelids of Tubifex tubifex. In an acute toxicity test, phenol's 96-hour LC50 value against Tubifex tubifex was identified to be 221.552 mg/L. Using the GUTS simulation, which places the GUTS-SD model on top of the GUTS-IT model, it was possible to confirm that the test organism would survive an acute exposure to phenol overall. After 14 days of treatment with 10 % and 20 % of the phenol's 96-hour LC50 values, long-term bioassays revealed changes in protein levels and in oxidative stress enzyme levels. Total protein concentration dropped during the bioassay, but levels of antioxidant enzymes (CAT, GST, SOD, and MDA) increased. The Pearson correlation matrix and the Integrated Biomarker Response (IBR) index were used for examining the relationship between biomarkers, toxicants, and phenol-induced stress. The results show that exposure to phenol is detrimental to the survival and general health of Tubifex tubifex.

17.
J Environ Manage ; 370: 122397, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278019

RESUMEN

UV/sulfite-based advanced reduction processes (ARP) have attracted increasing attention due to their high capability for removing a wide range of pollutants. Therefore, developing UV/sulfite ARP systems with assisted Artificial Intelligence (AI) models is considered an efficient strategy for sustainable pollutant removal. The present study delves into modeling and optimizing photodegradation of tetracycline (TC) antibiotics under UV/sulfite/рhenol reԁuсtion рroсess (UV/SPAP) using integrаteԁ Artifiсiаl Neurаl Networks (ANN), Suррort Veсtor Regression (SVR), аnԁ Genetiс Algorithm (GA). The сonсentrаtions of рhenol (X1) аnԁ sulfite (X2), рH (X3), reасtion time (X4), аnԁ TC сonсentrаtion (X5) in our exрerimentаl setuр were varied, аnԁ use the generаteԁ ԁаtа to trаin AI moԁels. The findings revealed that the AI-optimized performance is very effective in predicting and optimizing the removal of TC, thereby providing a sustainable water treatment approach. In general, SVR performed better based on scaling coefficients and ANN using different criteria indicated that X4 and X5 parameters were statistically significant. Oрtimаl rаnges for X1, X2, X3, X4, аnԁ X5 аre ԁetermineԁ to be 6.34, 3, 8.45, 80.13, аnԁ 1, resрeсtively. This аррroасh highlights the imрortаnсe of integrаting AI аnԁ ARP for sustаinаble environmentаl mаnаgement.

18.
Molecules ; 29(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39339378

RESUMEN

This work studies the partition of phenolic compounds, namely caffeic acid, syringic acid, vanillic acid, ferulic acid, and vanillin, in aqueous two-phase systems (ATPSs) formed by acetonitrile and deep eutectic solvents (DESs) based on choline chloride ([Ch]Cl) and carbohydrates (sucrose, d-glucose, d-mannose, arabinose, and d-xylose). The binodal curves built at 25 °C and 0.1 MPa using DES were compared with ATPS composed of [Ch]Cl and the same carbohydrates. The ability to form ATPS depends on the number and kind of hydroxyl groups in DES's hydrogen-bond donor compound (carbohydrates). ATPS based on DES showed biphasic regions larger than the systems based on [Ch]Cl and carbohydrates alone due to the larger hydrophilicity of DES. The ATPS were used to study the partition of the phenolic compounds. For all the systems, the biomolecules preferentially partitioned to the acetonitrile-rich phase (K > 1), and the best recovery in the top phase ranged between 53.36% (caffeic acid) and 90.09% (vanillin). According to the remarkable results, DES-based ATPS can selectively separate ferulic acid and vanillin for the top phase and syringic, caffeic, and vanillic acids for the bottom phase, achieving a selectivity higher than two.

19.
Environ Res ; 263(Pt 1): 120057, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332795

RESUMEN

In this study, hydroxylamine hydrochloride (HA) was employed to enhance the activation of NiFe2O4 towards peroxymonosulfate (PMS) for the effective degradation of phenol. NiFe2O4 particles were synthesized via a simple hydrothermal method, followed by characterization of their surface morphology, and microstructure. Upon the addition of HA to the system of NiFe2O4/PMS, the degradation activity is significantly enhanced. The degradation efficiency of phenol reached 98.5% after 60 min using 0.6 g/L NiFe2O4, 3 mmol/L PMS, 2 mmol/L HA at pH 7, which increased by 4.76 times compared to the system without HA. The study further explored the activation mechanism of the NiFe2O4/HA/PMS system, revealing that HA significantly enhanced the conversion of Fe3+/Fe2+ and the leaching of metal ions, thereby accelerating the reaction rate. In addition, the NiFe2O4/HA/PMS system proved effective across a broad range of pH values. This study provides new insights and perspectives into enhancing peroxymonosulfate activation coupled with metal oxides catalysts through the use of reducing agents.

20.
Int J Biol Macromol ; 280(Pt 2): 135748, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299418

RESUMEN

High internal phase emulsions (HIPEs) are promising carrier materials for encapsulating and delivering hydrophobic bioactive compounds. By strategically adjusting the composition, particle size, or charge of HIPEs, it is possible to enhance both their stability and the bioaccessibility of hydrophobic polyphenols encapsulated within them. In this study, different soy protein isolate (SPI)-rutin (SPI-R) complexes (formed under various preheating temperatures) were used to stabilize HIPEs, while the particle size, and charge of HIPEs was further adjusted through different homogenization rates. The results demonstrated that an optimal preheating temperature of 70 °C for the complex and a homogenization rate of 15,000 rpm for HIPEs enhanced the stability of the entire emulsion system by producing more uniform and smaller droplet distribution with improved rheological properties. Furthermore, in vitro digestion experiments showed that HIPEs stabilized by the SPI-R complexes (HSR) at optimal homogenization rate had better loading efficiency (98.68 %) and bioaccessibility compared to other groups. Additionally, fitting results from release kinetics confirmed that rutin encapsulated by HSR could achieve sustained release effect. Overall, these findings suggest that HSR has great potential as an effective vehicle for delivering hydrophobic bioactive compounds like rutin within the food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA