Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 214-222, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35411859

RESUMEN

A size-strain line-broadening analysis of the XRPD patterns and Raman spectra for two anatase/brookite (TiO2)-based nanocomposites with carbon (C) was carried out and the results compared with those of a similar sample free of carbon. The crystal structures and microstructures of anatase and brookite, as well as their relative abundance ratio, have been refined from XRPD data by the Rietveld method (the low amount of carbon is neglected). The XRPD size-strain analysis resulted in reliable structure and microstructure results for both anatase and brookite. The experimental Raman spectra of all the samples in the region 100-200 cm-1 are dominated by a strong feature primarily composed of the most intense modes of anatase (Eg) and brookite (A1g). The anatase crystallite sizes of 14-17 nm, estimated by XRPD, suggest the application of the phonon confinement model (PCM) for the analysis of the anatase Eg mode, whereas the relatively large brookite crystallite size (27-29 nm) does not imply the use of the PCM for the brookite A1g mode. Superposition of the anatase Eg mode profile, calculated by the PCM, and the Lorentzian shape of the brookite A1g mode provide an appropriate simulation of the change in the dominant Raman feature in the spectra of TiO2-based nanocomposites with carbon. Raman spectra measured in the high-frequency range (1000-2000 cm-1) provide information on carbon in the investigated nanocomposite materials. The results from field-emission scanning electron microscope (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and nitrogen physisorption measurements support the XRPD and Raman results.

2.
Nanotechnology ; 32(45)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34343974

RESUMEN

Transport in GaN-based nanoscale devices is of supreme importance for various applications. While the transport in bulk and two-dimensional (2D) structures is relatively well understood, understanding one-dimensional (1D) transport is still at its nascent stage. More importantly, the nanoscale structures may not operate at an explicit dimension of 2D and 1D. The understanding of the transport becomes limited on such an occasion. Here, we investigate the evolution of low-field mobility in GaN-based nanostructures for increasing quantum confinement in a uniform framework. We have used a split-gate architecture to change the degree of quantum confinement electrostatically. The low-field mobility is experimentally determined, which is then matched using scattering theory. It is shown that acoustic phonon, polar optical phonon, and scattering from piezoelectric fields dominate these devices. Contrary to intuition, the piezoelectric fields play the most determining role in low-field regimes. In addition, the evolving density of states and 2D phonon confinement, in addition to electron confinement, lead to a non-monotonic change in mobility. A decrease in the number of states near conduction band minima tends to increase mobility by reducing the number of final scattering states for the electrons. A larger overlap between confined electrons and phonons aggravates scattering and reduces mobility. These two competing effects can lead to many possible values for mobility during device operation.

3.
ACS Nano ; 14(10): 13127-13136, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32960037

RESUMEN

Highly polar materials are usually preferred over weakly polar ones to study strong electron-phonon interactions and its fascinating properties. Here, we report on the achievement of simultaneous confinement of charge carriers and phonons at the vicinity of a 2D vertical homovalent singularity (antiphase boundary, APB) in an (In,Ga)P/SiGe/Si sample. The impact of the electron-phonon interaction on the photoluminescence processes is then clarified by combining transmission electron microscopy, X-ray diffraction, ab initio calculations, Raman spectroscopy, and photoluminescence experiments. 2D localization and layer group symmetry properties of homovalent electronic states and phonons are studied by first-principles methods, leading to the prediction of a type-II band alignment between the APB and the surrounding semiconductor matrix. A Huang-Rhys factor of 8 is finally experimentally determined for the APB emission line, underlining that a large and unusually strong electron-phonon coupling can be achieved by 2D vertical quantum confinement in an undoped III-V semiconductor. This work extends the concept of an electron-phonon interaction to 2D vertically buried III-V homovalent nano-objects and therefore provides different approaches for material designs, vertical carrier transport, heterostructure design on silicon, and device applications with weakly polar semiconductors.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549323

RESUMEN

Disordering of crystal lattice induced by irradiation with fast neutrons and other high-energy particles is used for the deep modification of electrical and optical properties of diamonds via significant nanoscale restructuring and defects engineering. Raman spectroscopy was employed to investigate the nature of radiation damage below the critical graphitization level created when chemical vapor deposition and natural diamonds are irradiated by fast neutrons with fluencies from 1 × 1018 to 3 × 1020 cm-2 and annealed at the 100-1700 °C range. The significant changes in the diamond Raman spectra versus the neutron-irradiated conditions are associated with the formation of intrinsic irradiation-induced defects that do not completely destroy the crystalline feature but decrease the phonon coherence length as the neutron dose increases. It was shown that the Raman spectrum of radiation-damaged diamonds is determined by the phonon confinement effect and that the boson peak is present in the Raman spectra up to annealing at 800-1000 °C. Three groups of defect-induced bands (first group = 260, 495, and 730 cm-1; second group = 230, 500, 530, 685, and 760 cm-1; and third group = 335, 1390, 1415, and 1740 cm-1) were observed in Raman spectra of fast-neutron-irradiated diamonds.

5.
Nano Lett ; 18(6): 3428-3434, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29727571

RESUMEN

We combine infrared and Raman spectroscopies to investigate finite length scale effects in CuGeO3 nanorods. The infrared-active phonons display remarkably strong size dependence whereas the Raman-active features are, by comparison, nearly rigid. A splitting analysis of the Davydov pairs reveals complex changes in chemical bonding with rod length and temperature. Near the spin-Peierls transition, stronger intralayer bonding in the smallest rods indicates a more rigid lattice which helps to suppress the spin-Peierls transition. Taken together, these findings advance the understanding of size effects and collective phase transitions in low-dimensional oxides.

6.
ACS Nano ; 9(10): 10244-51, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26365014

RESUMEN

Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg(2) and out-of-plane A1g(1) modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg(2) phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm(­1)/%, which is twice of that in Bi2Se3 bulk material (0.52 cm(­1)/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.

7.
Small ; 11(3): 361-6, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25168184

RESUMEN

Temperature and/or composition mapping inside high temperature energy conversion and storage devices are challenging, yet of critical importance to improve the material design for optimum performance. Here, the great potential of TiO2 nanoparticle (NP)-decorated graphite nanoplatelet (GNP) nanocomposites as high temperature thermal senors or gas sensors is reported. Effects of the GNP substrate on phonon confinement in Raman spectrum, grain growth, and phase stability of anatase TiO2 NPs at high temperatures are systematically studied. Thermally sensitive Raman signatures, indicating the ultrafast grain growth of TiO2 NPs in response to short thermal shock treatments (0.1-25 s) at high temperatures, are exploited for high temperature thermal sensing applications. A very high accuracy of nearly 98% in temperature measurements is demonstrated for a given short-time thermal exposure. Thermal stability of anatase TiO2 NPs against transformation into the rutile phase in TiO2 -GNP nancomposites is substantially increased by controlling the surface area of the substrate, which would significantly improve the performance of TiO2 -based high temperature gas sensors.

8.
J Phys Chem Lett ; 3(9): 1089-93, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-26288041

RESUMEN

Oxide-embedded and oxide-free alkyl-terminated silicon (Si) nanocrystals with diameters ranging from 3 nm to greater than 10 nm were studied by Raman spectroscopy. For ligand-passivated nanocrystals, the zone center Raman-active mode of diamond cubic Si shifted to lower frequency with decreasing size, accompanied by asymmetric peak broadening, as extensively reported in the literature. The size dependence of the Raman peak shifts, however, was significantly more pronounced than previously reported or predicted by the RWL (Richter, Wang, and Ley) and bond polarizability models. In contrast, Raman peak shifts for oxide-embedded nanocrystals were significantly less pronounced as a result of the stress induced by the matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA