Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Plant Sci ; 15: 1426832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290742

RESUMEN

High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.

2.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364889

RESUMEN

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Asunto(s)
Enfermedad , Fosfatidilinositoles , Transducción de Señal , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Humanos
3.
J Biol Chem ; 299(8): 105022, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423304

RESUMEN

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas , Inositol Polifosfato 5-Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Dominios Homologos src , Fosfatidilinositoles , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
4.
Cell Chem Biol ; 30(9): 1144-1155.e4, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37354909

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. We recently discovered that neuronal regeneration-related protein (NREP/P311), an epigenetically regulated gene reprogrammed by parental metabolic syndrome, is downregulated in human NAFLD. To investigate the impact of NREP insufficiency, we used RNA-sequencing, lipidomics, and antibody microarrays on primary human hepatocytes. NREP knockdown induced transcriptomic remodeling that overlapped with key pathways impacted in human steatosis and steatohepatitis. Additionally, we observed enrichment of pathways involving phosphatidylinositol signaling and one-carbon metabolism. Lipidomics analyses also revealed an increase in cholesterol esters and triglycerides and decreased phosphatidylcholine levels in NREP-deficient hepatocytes. Signalomics identified calcium signaling as a potential mediator of NREP insufficiency's effects. Our results, together with the encouraging observation that several single nucleotide polymorphisms (SNPs) spanning the NREP locus are associated with metabolic traits, provide a strong rationale for targeting hepatic NREP to improve NAFLD pathophysiology.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Carbono/metabolismo
5.
Front Oncol ; 12: 852358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237322

RESUMEN

Phosphoinositide metabolism is critically involved in human cancer cell migration and metastatic growth. The formation of lamellipodia at the leading edge of migrating cells is regulated by metabolism of the inositol phospholipid PI(4,5)P2 into PI(3,4,5)P3. The synthesized PI(3,4,5)P3 promotes the translocation of WASP family verprolin homologous protein 2 (WAVE2) to the plasma membrane and regulates guanine nucleotide exchange factor Rac-mediated actin filament remodeling. Here, we investigated if VIPR2, a receptor for vasoactive intestinal peptide (VIP), has a potential role in regulating cell migration via this pathway. We found that silencing of VIPR2 in MDA-MB-231 and MCF-7 human breast cancer cells inhibited VIP-induced cell migration. In contrast, stable expression of exogenous VIPR2 promoted VIP-induced tumor cell migration, an effect that was inhibited by the addition of a PI3-kinase (PI3K)γ inhibitor or a VIPR2-selective antagonist. VIPR2 stably-expressing cells exhibited increased PI3K activity. Membrane localization of PI(3,4,5)P3 was significantly attenuated by VIPR2-silencing. VIPR2-silencing in MDA-MB-231 cells suppressed lamellipodium extension; in VIPR2-overexpressing cells, VIPR2 accumulated in the cell membrane on lamellipodia and co-localized with WAVE2. Conversely, VIPR2-silencing reduced WAVE2 level on the cell membrane and inhibited the interaction between WAVE2, actin-related protein 3, and actin. These findings suggest that VIP-VIPR2 signaling controls cancer migration by regulating WAVE2-mediated actin nucleation and elongation for lamellipodium formation through the synthesis of PI(3,4,5)P3.

6.
Pestic Biochem Physiol ; 184: 105100, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715039

RESUMEN

Zinc ions (Zn2+) are used to promote plant growth and treat multiple diseases. However, it is still unclear which pathways in plants respond to Zn2+. In this study, we found that supplying (CH3COO)2Zn can effectively delay tobacco mosaic virus (TMV) replication and movement in Nicotiana benthamiana. To further understand the regulatory mechanism of antiviral activity mediated by Zn2+, we examined the transcriptomic changes of leaves treated with Zn2+. Three days after treatment, 7575 differential expression genes (DEGs) were enriched in the Zn2+ treatment group compared with the control group. Through GO and KEGG analysis, the pathway of phosphatidylinositol signaling system and inositol phosphate metabolism were significantly enriched after treated with Zn2+, and a large number of ethylene-responsive transcription factors (ERFs) involved in inositol phosphate metabolism were found to be enriched. We identified ERF5 performed a positive effect on plant immunity. Our findings demonstrated that Zn2+-mediated resistance in N. benthamiana activated signal transduction and regulated the expression of resistance-related genes. The results of the study uncover a global view of mRNA changes in Zn2+-mediated cellular processes involved in the competition between plants and viruses.


Asunto(s)
Virus del Mosaico del Tabaco , Perfilación de la Expresión Génica , Fosfatos de Inositol/metabolismo , Iones/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana , Zinc/metabolismo , Zinc/farmacología
7.
J Biol Chem ; 297(5): 101172, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624316

RESUMEN

The protein Lgl1 is a key regulator of cell polarity. We previously showed that Lgl1 is inactivated by hyperphosphorylation in glioblastoma as a consequence of PTEN tumour suppressor loss and aberrant activation of the PI 3-kinase pathway; this contributes to glioblastoma pathogenesis both by promoting invasion and repressing glioblastoma cell differentiation. Lgl1 is phosphorylated by atypical protein kinase C that has been activated by binding to a complex of the scaffolding protein Par6 and active, GTP-bound Rac. The specific Rac guanine nucleotide exchange factors that generate active Rac to promote Lgl1 hyperphosphorylation in glioblastoma are unknown. We used CRISPR/Cas9 to knockout PREX1, a PI 3-kinase pathway-responsive Rac guanine nucleotide exchange factor, in patient-derived glioblastoma cells. Knockout cells had reduced Lgl1 phosphorylation, which was reversed by re-expressing PREX1. They also had reduced motility and an altered phenotype suggestive of partial neuronal differentiation; consistent with this, RNA-seq analyses identified sets of PREX1-regulated genes associated with cell motility and neuronal differentiation. PREX1 knockout in glioblastoma cells from a second patient did not affect Lgl1 phosphorylation. This was due to overexpression of a short isoform of the Rac guanine nucleotide exchange factor TIAM1; knockdown of TIAM1 in these PREX1 knockout cells reduced Lgl1 phosphorylation. These data show that PREX1 links aberrant PI 3-kinase signaling to Lgl1 phosphorylation in glioblastoma, but that TIAM1 is also to fill this role in a subset of patients. This redundancy between PREX1 and TIAM1 is only partial, as motility was impaired in PREX1 knockout cells from both patients.


Asunto(s)
Glioblastoma/metabolismo , Glicoproteínas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Glioblastoma/genética , Glicoproteínas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Proteínas de Neoplasias/genética , Fosforilación/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
8.
J Biol Chem ; 296: 100726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33933453

RESUMEN

Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as focal segmental glomerular sclerosis. TRPC5 channels are activated not only by elevated levels of extracellular Ca2+or lanthanide ions but also by G protein (Gq/11) stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipase C enzymes leads to PKC-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity, remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Employing whole-cell patch-clamp, we used an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition and the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity and illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica
9.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32948655

RESUMEN

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Asunto(s)
Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Regulación Alostérica , GTP Fosfohidrolasas/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/genética , Dominios Homólogos a Pleckstrina , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/genética
10.
J Biol Chem ; 295(24): 8236-8251, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32358062

RESUMEN

The cytokine content in tissue microenvironments shapes the functional capacity of a T cell. This capacity depends on the integration of extracellular signaling through multiple receptors, including the T-cell receptor (TCR), co-receptors, and cytokine receptors. Transforming growth factor ß (TGF-ß) signals through its cognate receptor, TGFßR, to SMAD family member proteins and contributes to the generation of a transcriptional program that promotes regulatory T-cell differentiation. In addition to transcription, here we identified specific signaling networks that are regulated by TGFßR. Using an array of biochemical approaches, including immunoblotting, kinase assays, immunoprecipitation, and flow cytometry, we found that TGFßR signaling promotes the formation of a SMAD3/4-protein kinase A (PKA) complex that activates C-terminal Src kinase (CSK) and thereby down-regulates kinases involved in proximal TCR activation. Additionally, TGFßR signaling potentiated CSK phosphorylation of the P85 subunit in the P85-P110 phosphoinositide 3-kinase (PI3K) heterodimer, which reduced PI3K activity and down-regulated the activation of proteins that require phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) for their activation. Moreover, TGFßR-mediated disruption of the P85-P110 interaction enabled P85 binding to a lipid phosphatase, phosphatase and tensin homolog (PTEN), aiding in the maintenance of PTEN abundance and thereby promoting elevated PtdIns(4,5)P2 levels in response to TGFßR signaling. Taken together, these results highlight that TGF-ß influences the trajectory of early T-cell activation by altering PI3K activity and PtdIns levels.


Asunto(s)
Activación de Linfocitos/inmunología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosfatidilinositoles/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Activación Enzimática , Estabilidad de Enzimas , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Multimerización de Proteína , Proteína smad3/antagonistas & inhibidores , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
11.
Biomolecules ; 9(12)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783610

RESUMEN

Transient receptor potential cation channels are emerging as important physiological and therapeutic targets. Within the vanilloid subfamily, transient receptor potential vanilloid 2 (TRPV2) and 4 (TRPV4) are osmo- and mechanosensors becoming critical determinants in cell structure and activity. However, knowledge is scarce regarding how TRPV2 and TRPV4 are trafficked to the plasma membrane or specific organelles to undergo quality controls through processes such as biosynthesis, anterograde/retrograde trafficking, and recycling. This review lists and reviews a subset of protein-protein interactions from the TRPV2 and TRPV4 interactomes, which is related to trafficking processes such as lipid metabolism, phosphoinositide signaling, vesicle-mediated transport, and synaptic-related exocytosis. Identifying the protein and lipid players involved in trafficking will improve the knowledge on how these stretch-related channels reach specific cellular compartments.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Unión Proteica , Transporte de Proteínas , Canales Catiónicos TRPV/genética
12.
BMC Plant Biol ; 19(1): 516, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31771523

RESUMEN

BACKGROUND: Intermittent dehydration caused by tidal changes is one of the most important abiotic factors that intertidal seaweeds must cope with in order to retain normal growth and reproduction. However, the underlying molecular mechanisms for the adaptation of red seaweeds to repeated dehydration-rehydration cycles remain poorly understood. RESULTS: We chose the red seaweed Gloiopeltis furcata as a model and simulated natural tidal changes with two consecutive dehydration-rehydration cycles occurring over 24 h in order to gain insight into key molecular pathways and regulation of genes which are associated with dehydration tolerance. Transcription sequencing assembled 32,681 uni-genes (GC content = 55.32%), of which 12,813 were annotated. Weighted gene co-expression network analysis (WGCNA) divided all transcripts into 20 modules, with Coral2 identified as the key module anchoring dehydration-induced genes. Pathways enriched analysis indicated that the ubiquitin-mediated proteolysis pathway (UPP) and phosphatidylinositol (PI) signaling system were crucial for a successful response in G. furcata. Network-establishing and quantitative reverse transcription PCR (qRT-PCR) suggested that genes encoding ubiquitin-protein ligase E3 (E3-1), SUMO-activating enzyme sub-unit 2 (SAE2), calmodulin (CaM) and inositol-1,3,4-trisphosphate 5/6-kinase (ITPK) were the hub genes which responded positively to two successive dehydration treatments. Network-based interactions with hub genes indicated that transcription factor (e.g. TFIID), RNA modification (e.g. DEAH) and osmotic adjustment (e.g. MIP, ABC1, Bam1) were related to these two pathways. CONCLUSIONS: RNA sequencing-based evidence from G. furcata enriched the informational database for intertidal red seaweeds which face periodic dehydration stress during the low tide period. This provided insights into an increased understanding of how ubiquitin-mediated proteolysis and the phosphatidylinositol signaling system help seaweeds responding to dehydration-rehydration cycles.


Asunto(s)
Rhodophyta/fisiología , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositoles/metabolismo , Rhodophyta/enzimología , Rhodophyta/genética , Transducción de Señal , Estrés Fisiológico , Olas de Marea , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación
13.
J Biol Chem ; 294(47): 17735-17757, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31594866

RESUMEN

The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Fosfatidilinositoles/metabolismo , Canales de Potasio Shab/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Células HEK293 , Hipocampo/citología , Homeostasis , Humanos , Cinética , Ratones , Ratones Noqueados , Ácidos Fosfatidicos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fotoblanqueo , Unión Proteica , Multimerización de Proteína , Ratas , Receptores Muscarínicos/metabolismo , Sirolimus/farmacología
14.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262088

RESUMEN

Calorie-dense high-fat diets (HF) are associated with detrimental health outcomes, including obesity, cardiovascular disease, and diabetes. Both pre- and post-natal HF diets have been hypothesized to negatively impact long-term metabolic health via epigenetic mechanisms. To understand how the timing of HF diet intake impacts DNA methylation and metabolism, male Sprague-Dawley rats were exposed to either maternal HF (MHF) or post-weaning HF diet (PHF). At post-natal week 12, PHF rats had similar body weights but greater hepatic lipid accumulation compared to the MHF rats. Genome-wide DNA methylation was evaluated, and analysis revealed 1744 differentially methylation regions (DMRs) between the groups with the majority of the DMR located outside of gene-coding regions. Within differentially methylated genes (DMGs), intragenic DNA methylation closer to the transcription start site was associated with lower gene expression, whereas DNA methylation further downstream was positively correlated with gene expression. The insulin and phosphatidylinositol (PI) signaling pathways were enriched with 25 DMRs that were associated with 20 DMGs, including PI3 kinase (Pi3k), pyruvate kinase (Pklr), and phosphodiesterase 3 (Pde3). Together, these results suggest that the timing of HF diet intake determines DNA methylation and gene expression patterns in hepatic metabolic pathways that target specific genomic contexts.


Asunto(s)
Metilación de ADN , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética , Hígado/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Femenino , Genotipo , Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Fosfatidilinositoles/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sitio de Iniciación de la Transcripción
15.
Genes (Basel) ; 10(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121965

RESUMEN

Inositol polyphosphate 5-phosphatase (5PTase), a key enzyme that hydrolyzes the 5` position of the inositol ring, has essential functions in growth, development, and stress responses in plants, yeasts, and animals. However, the evolutionary history and patterns of 5PTases have not been examined systematically. Here, we report a comprehensive molecular evolutionary analysis of the 5PTase gene family and define four groups. These four groups are different from former classifications, which were based on in vitro substrate specificity. Most orthologous groups appear to be conserved as single or low-copy genes in all lineages in Groups II-IV, whereas 5PTase genes in Group I underwent several duplication events in angiosperm, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for 5PTase duplications in angiosperm. Plant 5PTases have more members than that of animals, and most plant 5PTase genes appear to have evolved under strong purifying selection. The paralogs have diverged in substrate specificity and expression pattern, showing evidence of selection pressure. Meanwhile, the increase in 5PTases and divergences in sequence, expression, and substrate might have contributed to the divergent functions of 5PTase genes, allowing the angiosperms to successfully adapt to a great number of ecological niches.


Asunto(s)
Evolución Molecular , Inositol Polifosfato 5-Fosfatasas/genética , Magnoliopsida/genética , Secuencia de Aminoácidos/genética , Arabidopsis/genética , Duplicación de Gen , Inositol Polifosfato 5-Fosfatasas/metabolismo , Especificidad por Sustrato
16.
J Biol Chem ; 294(23): 9161-9171, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023825

RESUMEN

The low-level endo-lysosomal signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), is required for full assembly and activity of vacuolar H+-ATPases (V-ATPases) containing the vacuolar a-subunit isoform Vph1 in yeast. The cytosolic N-terminal domain of Vph1 is also recruited to membranes in vivo in a PI(3,5)P2-dependent manner, but it is not known if its interaction with PI(3,5)P2 is direct. Here, using biochemical characterization of isolated yeast vacuolar vesicles, we demonstrate that addition of exogenous short-chain PI(3,5)P2 to Vph1-containing vacuolar vesicles activates V-ATPase activity and proton pumping. Modeling of the cytosolic N-terminal domain of Vph1 identified two membrane-oriented sequences that contain clustered basic amino acids. Substitutions in one of these sequences (231KTREYKHK) abolished the PI(3,5)P2-dependent activation of V-ATPase without affecting basal V-ATPase activity. We also observed that vph1 mutants lacking PI(3,5)P2 activation have enlarged vacuoles relative to those in WT cells. These mutants exhibit a significant synthetic growth defect when combined with deletion of Hog1, a kinase important for signaling the transcriptional response to osmotic stress. The results suggest that PI(3,5)P2 interacts directly with Vph1, and that this interaction both activates V-ATPase activity and protects cells from stress.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Mutagénesis , Presión Osmótica , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/química , Vacuolas/metabolismo
17.
J Biol Chem ; 294(13): 4793-4805, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30692200

RESUMEN

T-cell receptor (TCR) signaling strength is a dominant factor regulating T-cell differentiation, thymic development, and cytokine signaling. The molecular mechanisms by which TCR signal strength is transduced to downstream signaling networks remains ill-defined. Using computational modeling, biochemical assays, and imaging flow cytometry, we found here that TCR signal strength differentially generates phosphatidylinositol species. Weak TCR signals generated elevated phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and reduced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, whereas strong TCR signals reduced PI(4,5)P2 and elevated PIP3 levels. A proteomics screen revealed that focal adhesion kinase bound PI(4,5)P2, biochemical assays disclosed that focal adhesion kinase is preferentially activated by weak TCR signals and is required for optimal Treg induction, and further biochemical experiments revealed how TCR signaling strength regulates AKT activation. Low PIP3 levels generated by weak TCR signals were sufficient to activate phosphoinositide-dependent kinase-1 to phosphorylate AKT on Thr-308 but insufficient to activate mTOR complex 2 (mTORC2), whereas elevated PIP3 levels generated by a strong TCR signal were required to activate mTORC2 to phosphorylate Ser-473 on AKT. Our results provide support for a model that links TCR signaling to mTORC2 activation via phosphoinositide 3-kinase signaling. Together, the findings in this work establish that T cells measure TCR signal strength by generating different levels of phosphatidylinositol species that engage alternate signaling networks to control cell fate decisions.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Animales , Linfocitos T CD4-Positivos/citología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30366418

RESUMEN

Mirabilis himalaica (Edgew.) Heimerl is one of the most important genuine medicinal plants in Tibet, in which the special plateau habitat has been associated with its excellent medicinal quality and efficacy. However, the mechanisms by which environmental factors affect biosynthesis of secondary metabolic components remain unclear in this species. In this study, RNA sequencing and iTRAQ (isobaric Tags for Relative and Absolute Quantification) techniques were used to investigate the critical molecular "events" of rotenoid biosynthesis responding to UV-B radiation, a typical plateau ecological factor presented in native environment-grown M. himalaica plants. A total of 3641 differentially expressed genes (DEGs) and 106 differentially expressed proteins (DEPs) were identified in M. himalaica between UV-B treatment and control check (CK). Comprehensive analysis of protein and transcript data sets resulted in 14 and 7 DEGs from the plant hormone signal transduction and phosphatidylinositol signaling system pathways, respectively, being significantly enriched. The result showed that the plant hormone signal transduction and phosphatidylinositol signaling system might be the key metabolic strategy of UV-B radiation to improve the biosynthesis of rotenoid in M. himalaica. At same time, most of the DEGs were associated with auxin and calcium signaling, inferring that they might drive the downstream transmission of these signal transduction pathways. Regarding those pathways, two chalcone synthase enzymes, which play key roles in the biosynthesis of rotenoid that were thought as the representative medicinal component of M. himalaica, were significantly upregulated in UV-B radiation. This study provides a theoretical basis for further exploration of the adaptation mechanism of M. himalaica to UV-B radiation, and references for cultivation standardization.


Asunto(s)
Mirabilis/metabolismo , Mirabilis/efectos de la radiación , Extractos Vegetales/análisis , Proteómica/métodos , Transcriptoma/genética , Rayos Ultravioleta , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fosfatidilinositoles/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
19.
J Biol Chem ; 293(46): 17780-17791, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30237168

RESUMEN

Signaling events at membranes are often mediated by membrane lipid composition or membrane physical properties. These membrane properties could act either by favoring the membrane binding of downstream effectors or by modulating their activity. Several proteins can sense/generate membrane physical curvature (i.e. shape). However, the modulation of the activity of enzymes by a membrane's shape has not yet been reported. Here, using a cell-free assay with purified diacylglycerol kinase ϵ (DGKϵ) and liposomes, we studied the activity and acyl-chain specificity of an enzyme of the phosphatidylinositol (PI) cycle, DGKϵ. By systematically varying the model membrane lipid composition and physical properties, we found that DGKϵ has low activity and lacks acyl-chain specificity in locally flat membranes, regardless of the lipid composition. On the other hand, these enzyme properties were greatly enhanced in membrane structures with a negative Gaussian curvature. We also found that this is not a consequence of preferential binding of the enzyme to those structures, but rather is due to a curvature-mediated allosteric regulation of DGKϵ activity and acyl-chain specificity. Moreover, in a fine-tuned interplay between the enzyme and the membrane, DGKϵ favored the formation of structures with greater Gaussian curvature. DGKϵ does not bear a regulatory domain, and these findings reveal the importance of membrane curvature in regulating DGKϵ activity and acyl-chain specificity. Hence, this study highlights that a hierarchic coupling of membrane physical property and lipid composition synergistically regulates membrane signaling events. We propose that this regulatory mechanism of membrane-associated enzyme activity is likely more common than is currently appreciated.


Asunto(s)
Diacilglicerol Quinasa/química , Liposomas/química , Fosfatidilinositoles/química , Animales , Línea Celular , Colesterol/química , Diglicéridos/química , Pruebas de Enzimas , Humanos , Fusión de Membrana , Micelas , Estructura Molecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Spodoptera , Propiedades de Superficie
20.
J Biol Chem ; 293(17): 6387-6397, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29535186

RESUMEN

Phospholipase C (PLC) enzymes hydrolyze membrane phosphatidylinositol 4,5 bisphosphate (PIP2) and regulate Ca2+ and protein kinase signaling in virtually all mammalian cell types. Chronic activation of the PLCϵ isoform downstream of G protein-coupled receptors (GPCRs) contributes to the development of cardiac hypertrophy. We have previously shown that PLCϵ-catalyzed hydrolysis of Golgi-associated phosphatidylinositol 4-phosphate (PI4P) in cardiac myocytes depends on G protein ßγ subunits released upon stimulation with endothelin-1. PLCϵ binds and is directly activated by Ras family small GTPases, but whether they directly interact with Gßγ has not been demonstrated. To identify PLCϵ domains that interact with Gßγ, here we designed various single substitutions and truncations of WT PLCϵ and tested them for activation by Gßγ in transfected COS-7 cells. Deletion of only a single domain in PLCϵ was not sufficient to completely block its activation by Gßγ, but blocked activation by Ras. Simultaneous deletion of the C-terminal RA2 domain and the N-terminal CDC25 and cysteine-rich domains completely abrogated PLCϵ activation by Gßγ, but activation by the GTPase Rho was retained. In vitro reconstitution experiments further revealed that purified Gßγ directly interacts with a purified fragment of PLCϵ (PLCϵ-PH-RA2) and increases PIP2 hydrolysis. Deletion of the RA2 domain decreased Gßγ binding and eliminated Gßγ stimulation of PIP2 hydrolysis. These results provide first evidence that Gßγ directly interacts with PLCϵ and yield insights into the mechanism by which ßγ subunits activate PLCϵ.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/enzimología , Miocitos Cardíacos/enzimología , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Células COS , Chlorocebus aethiops , Endotelina-1/genética , Endotelina-1/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Aparato de Golgi/genética , Miocitos Cardíacos/citología , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositido Fosfolipasa C/genética , Dominios Proteicos , Ratas , Fosfatasas cdc25/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA